Puurakenteet

OHJEET 1983, muutettu 1990

YMPÄRISTÖMINISTERIÖ
Puurakenteet

OHJEET 1983, muutettu 1990

Ympäristöministeriö on rakennuslain 13 §:n (577/89) nojalla muuttanut Suomen rakentamismääräyskokoelmaan kuuluvien 29 päivänä syyskuuta 1982 annettujen ohjeiden B10 Puurakenteet kohdat 1.1, 2.2, 4.1, 5.2 ja 8.4 sekä lisännyt kohdan 9. Kohta 9 korvaa aikaisemmin ohjeessa E5 Kantaviem ja osastoivien rakenteiden palokestänvyyset eisetytet puurakenteita käsittelee ohjeet.

Muutokset tulevat voimaan 1 päivänä heinäkuuta 1990 ja koskevat rakentamistoimenpidettä, johon on haettu lapaa mainittuna päivänä tai sen jälkeen.

Helsingissä 7 päivänä maaliskuuta 1990

Osastopäällikkö ylijohtaja Sirkka Hautojärvi

Toimistopäällikkö Esko Mononen

Sisällys

1 YLEISTÄ
 1.1 Soveltamisala
 1.2 Määrittelemä
 1.3 Merkintöjä

2 MATERIAALIT
 2.1 Rakennuspuutavara
 2.2 Liimapuu
 2.3 Puulevyt
 2.4 Mekaaniset liittimet
 2.5 Liimat
 2.6 Muut rakenneosat

3 SUUNNITTELUPERUSTEET
 3.1 Rakennuesuunnitelman sisältö
 3.2 Lujuudet ja kimmomoduulit
 3.3 Kuormien aikaluvat
 3.4 Kosteusluvut

4 MITOITUSPERUSTEET
 4.1 Sallitut taipumat
 4.2 Laskennallinen mitoitus

5 RAKENNEOSIEN MITOITUS
 5.1 Palkit ja pilarit
 5.2 Liitokset
 5.3 Levy rakenteet

6 LAHONTORJUNTA
 6.1 Sovellutusalue
 6.2 Rakenteellinen suojaus
 6.3 Kemiallinen suojaus

7 RAKENTAMINEN
 7.1 Materiaalin ja rakennusosien säilytys työmaalla
 7.2 Rakennustarvikkeiden ennakkotarkastus
 7.3 Rakenteiden kokoaminen
 7.4 Muodonmuutosten huomioonotto

8 MITOITUS SALLITTUJA JÄNNITYKSIÄ KÄYTTÄEN
 8.1 Mitoitusperusteet
 8.2 Laskennallinen mitoitus
 8.3 Rakenneosien mitoitus
 8.4 Liitokset

9 PALOTEKINEN MITOITUS
 9.1 Yleisohjeet
 9.2 Palotekinisen mitoituksen perusteet
 9.3 Mitoitus
1.3 Merkintöjä

D vaaran halkaisija
E kimmomoduuli syyn suuntaan
E_x ominaiskimmomoduuli syyn suuntaan
E_z kimmomoduuli kohtisuoraan syyn suuntaan vastaan
F liitoksen leikkausvoima
G liukumoduuli
I poikkileikkauskäynnysmomentti
V leikkausvoima
b palkin leveys
f laskentaluus

g laskentataivutusluus
h ominaisetaivutusluus
i laskentapuristusluus syyn suuntaan
j ominaispuristusluus syyn suuntaan
k ominaispuristusluus kohtisuoraan syyn suuntaan vastaan
l laskentavetoluus syyn suuntaan
m laskentaleikkausluus syiden suuntaisessa tasossa syiden suuntaan
n laskentaleikkausluus syiden suuntaisessa tasossa kohtisuoraan syitä vastaan
p paneelileikkausluuden laskenta-arvo
q ominaispaneelileikkausluus
r kim moteorien mukaan laskettu paneelileikkausjännitys lomahdukseen suhteen
s liitimen metallin myötäraja

h korkeus
k mekaanisen liitoksen siirtymäkerroin, kerroin kisko- kopaineen kapasiteettia laskettaessa
K lomahdusta laskettaessa käytettävä kerroin
L nurjahdukseen huomioon ottava kerroin
J järveväli, purustussuun, pituus, kuormitusluku
C laskentakaavasta sekä puoleisessa puussa
L_1 redusoitu pituus, jolla otetaan huomioon puulan
o liimapuun lamellin pakkuus, liitetään paktukseksi
u puun kosteus

a voiman ja puun syytön suunnan välillä kulma
γ rakenteen materiaalin osavarmuus
δ mekaanisen liitoksen siirtymä
σ_b laskentakuormien aiheuttama taivirtusjännitys
σ_c laskentakuormien aiheuttama puristusjännitys
σ_t laskentakuormien aiheuttama vetojännitys syyn suuntaan

Ominaisluus

Rakenteen materiaalin lujuus, joka todennäköisyydellä on 0,95 yllitetään.
MATERIAALIT

2.1 Rakennuspuuttavara

Rakennepuuttavaralla tarkoitetaan tässä ohjeessa pyöreitä puuttavaraa ja sahatavaraa, joita käytetään kantavina rakenteina tai niiden osina.

Sahatavara luokitellaan joko silmäämaräisesti, koneellisesti tai muulla luotettavaksi katsottavalla tavalla lujusluokkiin T40, T30, T24 (S8) ja T18 (S6). Luokassa T40 käytetään runkorakenteissa ainoastaan lujusleimattua puuttavaraa. Pyöreä puuttavaa kuuluu luokkaan T30. Teollisesti valmistetuissa elementeissä, joissa puuttavan lujusluokkaa osoittava merkintä ei jätä näkyviin, tulee lujusluokkaa osoitavan leiman olla helposti tarkastettavassa paikassa.

2.2 Liimapuu

Liimapuu on neljästä tai useammasta lamellista liimaatalla koottu puurakenne, jossa lamellien syyt ovat rakenteen pituussuuntaan. Mikäli lamelleja on vähemmän kuin neljä, sovelletaan rakennesahatavaralle annettuja ohjeita. Lamellit ovat joko männyn- tai kuusisahatavaraa.

2.3 Puulevyt

2.3.1 Kuitulevyt

Tässä ohjeessa käsitellään seuraavia kuitulevyjä (poikkeavat standardista SFS 2190):

- puolikova kuitulevy, tiheys 600...800 kg/m³ ja
- kova kuitulevy, tiheys yli 800 kg/m³

Puolikkova ja kova kuitulevyä voidaan käyttää kosteusluokissa 1 ja 2.

2.3.2 Lastulevy

Lastulevyillä tarkoitetaan standardin SFS 3515 mukaisia levyjä sekä ureameliiniliimialla liimattuja levyjä. Tavallista lastulevyä voidaan käyttää rakenteissa vain kosteusluokassa 1. Ureameliiniiliimilla liimattua lastulevyä voidaan käyttää myös kosteusluokassa 2.

2.3.3 Vanerituotteet

Vanterit jaetaan puumateriaalin perusteella koivuvaneeriin (SFS 2475), sekavaneeriin (SFS 4091) ja havupuuvaneeriin (SFS 4092).

2.3.4 Yhdistelmälevyt

Yhdistelmälevytihin luetaan puumateriaalista valmis- tetut levyt, jotka eivät ole kuitulevyä, lastulevyää tai vaneria.

Yhdistelmälevyjen käyttömahdollisuuDET on eritoten pyöreissä niitä liainkin levyvakaale

2.4 Mekaaniset liittimet

2.4.1 Naulat

Tämä ohje kiisitellee lankanauloja, konenauloja sekä hakasia, joiden pääraaka-aine on teräs.

Kampanauloilla tulee profiloinnin harjann olla terävä ja ulosvetoa vastustava pinnan tulee olla kohtisuorassa ulosvetosuuntaa vastaan. Harjoja tulee olla vähintään kaksi naulapakkuuden d matkalla. Sinkitys ei saa oleellisesti tasoittaa profiloitia.

Kierrenaulassa tulee kierteen nousun rajoittua mää- rään 5d, kun d on naulan paksuus.

Naulan kannan koko ja muoto vaikuttaavat kannan läpimenolujuteen. Normaalikokoisen kannan halkaisija on vähintään 2,5d. Hakaset ja konenaulat voivat poiketa tästä.

2.4.2 Puuruuvit ja kuusiokantaruuvit (kansiruuvit)

Tämä ohje koskee standardien SFS 2286, 2287 ja 2288 mukaisia puuruuveja sekä standardin SFS 2248 mukaisia kuusiokantaruuveja.

2.4.3 Pultit

Tämä ohje koskee pultteja, jotka on valmistettu vähintään lujusluokkaa Fe 37 olevasta teräksestä. Ne ovat mm. standardien SFS 2063 ja 2458 mukaiset pultit. Pulttilitoisissa käytetään standardin SFS B.V. 156 ja 157 mukaisia uloslevyjä.

2.4.4 Vaarnat

Vaarnoilla tarkoitetaan tässä ohjeessa hammaslevyjä ja rengasvaarnoja, jotka yhdessä pultin kanssa muodostavat rasituksia kestävän liitoksen.
2.4.5 Naulalevyt
Naulalevyjen tulee olla ruostesuojattuja (sinkittyjä tai kadmiumilla pinnoitettuja) tai niiden tulee olla ruostumattomasta materiaalista valmistettuja.

2.5 Liimat
Tässä ohjeessa liimat luokitellaan säänkestävyyden perusteella kahteen luokkaan
— säänkestäviin liimoihin ja
— muuihin liimoihin

2.5.2 Säänkestävät liimat
— resorsinolliliimat,
— fenoliilimat ja
— epoksiilimat.

Liimatessa puurakenteita, jotka saattavat joutua kosteusluokan 2, 3 tai 4 muuksiin kosteusosuuksisiin, käytetään säänkestäviä liimoja. Liimapuukannatteissa käytetään säänkestäviä liimoja kosteusluokissa 3 ja 4. Säänkestäviä liimoja käytetään muissakin kosteusluokissa, mikäli rakenteet joutuvat tavallista korkeampaan lämpötilaan tai vahingolliset kaasut pääsevät vaikuttamaan liimasuomioihin.

2.5.2 Muut liimat
Säänkestävätämiä liimoja ovat mm.
— kaseiniliimat,
— urealiimat ja
— melamiiniliimat.

2.6 Muut rakenneosat
Muilla rakenneosilla tarkoitetaan tässä ohjeessa sellaisia puurakenteiden osia, joiden materiaaleja ei ole käsitelty kohdissa 2.1....2.5. Muita rakenneosia käytetään liimittäen erityisesti huomiota puun ja sen kanssa käytettävän materiaalin yhteisominaisuuksiin ja korroosion kestävyyteen. Muut rakenneosat mitoitetaan ajo. materiaalialan koskevien määräysten ja ohjeiden mukaan.

3 SUUNNITTELUPERUSTEET

3.1 Rakennesuunnitelman sisältö
Rakennesuunnitelmassa esitetään rakennustarvikkeiden laatua, kuten esim. rakennetasavaran lujuusluokka, kosteusluokka, liimapuukannatteettua, lujuus- ja liimausluokka sekä suunnitteluomat, rakennustyöhön tarvittavat mitat ja mahdolliset asennushojeet. Mikäli puurakenne joutuu valmiissa rakenteissa koetamiin olosuhteisiin kuin rakennusaikana, esitetään suunnitelmissa saumakohtiin tarvittavat laajenemisvarat.

3.2 Lujuudet ja kimmomoduulit

Ominaislujuudet ja kimmomoduulit on määritetty n. 20°C:n lämpötilassa kosteusluokkien keskivaiheella. Kosteusluokka 4 vastaavat arvon on määritetty märillä koekappaleilla.

3.3 Kuormien aikaluokat
Puurakenteita suunniteltaessa huomioon otettavat kuormituksen jaotellaan kestonsa perusteella taulukon 3.1 mukaisiin luokkiin.

Taulukko 3.1
Kuormien aikaluokat

<table>
<thead>
<tr>
<th>Aikaluokka</th>
<th>Esimerkkejä</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Omapaino (Maan- ja vedenpaine)</td>
</tr>
<tr>
<td>kesto > 1,5 k</td>
<td>Koneet</td>
</tr>
<tr>
<td>B</td>
<td>Hyötykuorman pintakuorma (Lumikuorma)</td>
</tr>
<tr>
<td>Lyhytaikainen</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Kosteuden vaihtelun aiheuttamat kuormat</td>
</tr>
<tr>
<td>Hettekinen</td>
<td>Tual (Hyötykuorman pintakuorma) ≤ 2 kN</td>
</tr>
<tr>
<td>kesto < 10 h</td>
<td>Kaitseeseen vaikuttava kuorma</td>
</tr>
</tbody>
</table>
Taulukossa mainitsemattoon kuorman kuuluvuus kahteen tai useampaan aikaluokkaan voidaan kuorma sijoittaa niistä lyhytaikaisimpaan, jos siihen kuuluu yli 25 % kuormasta.

Kuormitusyhdistelmän käsitteessä kestoltaan erilaisia kuormia valitaan kuormitusyhdistelmän aikaluokkaksi vaikutusajaltaan lyhimmän kuorman aikaluokka.

3.4 Kosteusluokat

Rakennetta suunniteltaessa otetaan huomioon puumateriaalin kosteustila rakennetta ympäriöivän ilman suhteellisen kosteuden (RH) mukaan. Taulukossa 3.2 annetaan kussakin kosteusluokassa ilman suhteellinen kosteus (RH).

<table>
<thead>
<tr>
<th>Luokka</th>
<th>Suhteellinen kosteuden RH kuukauseskiarvo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sisäkuiva</td>
<td>RH < 0.6</td>
</tr>
<tr>
<td>2 Ulkokuiva</td>
<td>0.6 ≤ RH < 0.8</td>
</tr>
<tr>
<td>3 Kostea</td>
<td>0.8 ≤ RH < 0.95</td>
</tr>
<tr>
<td>4 Märkä</td>
<td>0.95 ≤ RH</td>
</tr>
</tbody>
</table>

Kosteusluokka 1: Kosteusluokka 1 kuuluu puurakenteen materiaali, joka on lämmitetyissä sisätiloissa tai vastavissa kosteusoloissa. Kosteusluokkaan 1 luetetaan myös lämmöneristikerroksessa olevat rakenteet sekä palkit, joiden vetopuoli on lämmöneristeen sisissä.

Kosteusluokka 2: Kosteusluokkaan 2 kuuluu ulkoilmassa kuivana oleva puurakenteen materiaali. Rakenteen on oltava katettuina tilassa sekä alta että sivuilta hyvin kastumiselta suojuutta.

Kosteusluokka 3: Kosteusluokkaan 3 kuuluu kosteasissa tilassa (esim. ulkona sisäle alttiina) oleva puumateriaali.

Kosteusluokka 4: Kosteusluokkaan 4 kuuluu veden välittömän vaikutuksen alaisena oleva puumateriaali.

Mitoitusperusteita käytetään
— lujuttua (rajaustarkasteluissa murtorajatila)
— muodonmutoksia (rajaustarkasteluissa käyttörajatila)

4.1 Sallitut taipumat

Kun levyä rasitetta pistekuorma Fp = 1,5 kN (aialuokka C) rajoitetaan tukien päällä olevan lattialevyn taipuma tukien suhteen arvoon
\[w \leq L/200 \]

4.2 Laskennallinen mitoitus

4.2.1 Poikkileikkausmitat

Sahataaran edellytetään täyttävän kosteustilassa u = 0,20 poikkileikkauskun nimellismitojen suhteen seuraavat vaatimukset:
+ 4 mm - 2 mm, kun mitta on alle 100 mm
+ 6 mm - 3 mm, kun mitta on alle 100 mm tai yli.

Laskelmat tehdään siinä poikkileikkauskunnassa, joka on määrävin. Poikkileikkauskun heikennettä otetaan huomioon seuraavilla periaatteilla noudattaen:

— Rakennesahataaran lujusuluokittelussa sallittavia poikkileikkausen heikennyskäsi ei tarvitse ottaa huomioon.
— Vederyissä ja taivutetuissa rakenteissa otetaan huomioon loveukset, aukot, pulttien reiät, vaarmojen syvennykset jne.
— Kuitenkaan alle 6 mm paksujen naulojen heikennyskäsi ei tarvitse ottaa huomioon.

4.2.1 Materiaalin osavarmuuskerroin

Murtorajatarkasteluissa materiaalin osavarmuuskerroin γ = 1,3, jolla ominaislujuudet ja -kimmoduuliälija ja -kimmoduulit jaetaan laskenta-arvojen saamiseksi. Materiaalin osavarmuuskerrointa voidaan pienentää 10 % vesikatorkanteissa, jotka eivät toimi yläpohjajan kantavana
4.2.3 Kimmo- ja lujuusarvot

Sahatavaran sekä liimapuun kimmo- ja lujuusarvot saadaan taulukoista 4.1 – 4.3. Liitosten lujuusarvot on esitetty kappaleessa 5.2.

Taulukko 4.1

Sahatavaran ominaislujuudet ja -kimmonomoduulit sekä keskimääräiset kimmonomoduulit aikaluokassa B ja kosteustilassa 1. Yksikkö MN/m²

<table>
<thead>
<tr>
<th>Lujusuokka</th>
<th>T40</th>
<th>T30</th>
<th>T24 (S8)</th>
<th>T18 (S6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lujusuokka laš-kettaessa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taivutus</td>
<td>fₚ</td>
<td>29</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>Puristus</td>
<td>fₚ</td>
<td>28</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td>Puristus</td>
<td>fₚ</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Veto</td>
<td>fₚ</td>
<td>19</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Veto</td>
<td>fₚ</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td>Leikkaus</td>
<td>fₚ</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Leikkaus</td>
<td>fₚ</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Kimmonomoduuli</td>
<td>Eₚ</td>
<td>7000</td>
<td>6000</td>
<td>5000</td>
</tr>
<tr>
<td>Liukumoduuli</td>
<td>Gₚ</td>
<td>350</td>
<td>300</td>
<td>250</td>
</tr>
<tr>
<td>Muodonmuutoksia laskettaessa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kimmomoduuli</td>
<td>Eₚ</td>
<td>8500</td>
<td>7000</td>
<td>6500</td>
</tr>
<tr>
<td>Kimmomoduuli</td>
<td>Eₚ</td>
<td>280</td>
<td>230</td>
<td>180</td>
</tr>
<tr>
<td>Liukumoduuli</td>
<td>Gₚ</td>
<td>420</td>
<td>350</td>
<td>320</td>
</tr>
</tbody>
</table>

Sahatavaran sekä liimapuun ominaislujuudet ja kimmonomoduulit muussa aikaluokassa kuin B ja muussa kosteustilassa kuin 1 saadaan taulukon 4.2 korjauskertoimien avulla.

Taulukko 4.2

Korjauskertoimet eri aika- ja kosteusluokkayhdistelmille aikaluokan B ja kosteusuokan 1 suhteen

<table>
<thead>
<tr>
<th>Aikaluokka</th>
<th>Lujusuokka laš-kettaessa</th>
<th>Muodonmuutoksia laskettaessa</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 ja 2</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0,85</td>
</tr>
<tr>
<td>C</td>
<td>1,3</td>
<td>1</td>
</tr>
</tbody>
</table>

Määrän tai tuoreen puutavan mitoitusarvot valitaan kosteusluokka 4:n mukaan.

Taulukko 4.3

Liimapuun ominaislujuudet ja -kimmonomoduulit sekä keskimääräiset kimmonomoduulit aikaluokassa B ja kosteustilassa 1. Yksikkö MN/m²

<table>
<thead>
<tr>
<th>Lujusuokka</th>
<th>L40</th>
<th>L30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lujusuokka laš-kettaessa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taivutus</td>
<td>fₚ</td>
<td>31</td>
</tr>
<tr>
<td>Puristus</td>
<td>fₚ</td>
<td>30</td>
</tr>
<tr>
<td>Puristus</td>
<td>fₚ</td>
<td>5</td>
</tr>
<tr>
<td>Veto</td>
<td>fₚ</td>
<td>21</td>
</tr>
<tr>
<td>Veto</td>
<td>fₚ</td>
<td>0,4</td>
</tr>
<tr>
<td>Leikkaus</td>
<td>fₚ</td>
<td>2,4</td>
</tr>
<tr>
<td>Leikkaus</td>
<td>fₚ</td>
<td>1,2</td>
</tr>
<tr>
<td>Kimmomoduuli</td>
<td>Eₚ</td>
<td>6600</td>
</tr>
<tr>
<td>Liukumoduuli</td>
<td>Gₚ</td>
<td>330</td>
</tr>
<tr>
<td>Muodonmuutoksia laskettaessa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kimmomoduuli</td>
<td>Eₚ</td>
<td>8500</td>
</tr>
<tr>
<td>Kimmomoduuli</td>
<td>Eₚ</td>
<td>280</td>
</tr>
<tr>
<td>Liukumoduuli</td>
<td>Gₚ</td>
<td>420</td>
</tr>
</tbody>
</table>

Liimapuupalmin korkeuden ylittäessä 300 mm vähennetään taivutuskapasiteettia kertoimella Cₚ:

\[
Cₚ = (\frac{300}{h})^{0.6}, \text{ jossa } h = \text{ palkin korkeus (mm)}.\]

<table>
<thead>
<tr>
<th>h (mm)</th>
<th>300</th>
<th>600</th>
<th>1 000</th>
<th>1 500</th>
<th>2 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cₚ</td>
<td>1,0</td>
<td>0,93</td>
<td>0,87</td>
<td>0,84</td>
<td>0,81</td>
</tr>
</tbody>
</table>

5

RAKENNEOSIEN MITOITUS

5.1 Palkit ja pilarit

5.1.1 Puristus

Mikäli puristusrasitus on kulmassa α syyn suuntaan nähden, tarkistetaan, että

\[
σ_{α} ≤ f_{c} - (f_{c} - f_{l}) \sin α \quad (\text{kuva 5.1})
\]

joska

\[
σ_{α} \text{ on laskentauomien aiheuttama puristusjännitys kulmassa } α \text{ syyn } α \text{ suuntaan nähden}
\]

fₚ on vastaava laskentalualus syyn suuntaan ja

fₜₚ on vastaava laskentalualus kohtisuoraan syyn suuntaan vastaan.
Kuva 5.1

Puristus kulmassa α-syyn suuntaan nähdyn

Kuvan 5.2 mukaisen kiskopaineen vaikutuessa tarkistetaan, että:

$$\sigma_{\text{cl}} \leq \left\{ \begin{array}{c}
\frac{1}{150/L} f_{\text{cl}} = k f_{\text{cl}} \\
1.8 f_{\text{cl}}
\end{array} \right. \tag{5.2}$$

jossa

- σ_{cl} on laskentakuormien aiheuttama puristusjännitys kohtisuoraan syyn suuntaan vastaan ja
- f_{cl} on vastaava laskentalajuus

Sama koskee leimapainetta

Kuva 5.2

Kiskopaine (mitat mm.)

Kertoimelle k on laskettu eräistä arvoja taulukossa 5.1.

Taulukko 5.1.

Kaavan (5.2) k-kerroin

<table>
<thead>
<tr>
<th>L (mm)</th>
<th>15</th>
<th>30</th>
<th>50</th>
<th>100</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>1.8</td>
<td>1.5</td>
<td>1.3</td>
<td>1.1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

5.1.2 Kiepahdus

Suoran poikkileikkaukseltaan suorakaiteen muotoisen taivutetun palkin kiepahdus otetaan huomioon kertomalla laskentalajuus kertoimella k, joka saadaan taulukosta 5.2 α_k-n funktiona. Taulukon 5.2 apusuure α_k saadaan kaavasta (5.3)

Taulukko 5.2.

Kiepahduskertoimen k, riippuvuus apusuureesta α_k

<table>
<thead>
<tr>
<th>$\alpha_k < 0.75$</th>
<th>$k_0 = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.75 \leq \alpha_k < 1.4$</td>
<td>$k_0 = 1.56 - 0.75 \alpha_k$</td>
</tr>
<tr>
<td>$1.4 \leq \alpha_k$</td>
<td>$k_0 = 1/\alpha_k^2$</td>
</tr>
</tbody>
</table>

$$\alpha_k = \frac{k_{\text{kl}}}{b} \sqrt{h \cdot L_k} \tag{5.3}$$

jonka kerroin k_{kl} saadaan eri kuormitus- ja tuentatapaussille taulukosta 5.3 ja jossa L_k on palkin kiertyminen estävien sivutukien välillä.

Taulukko 5.3.

Kaavan (5.3) k_{kl}-kerroin

<table>
<thead>
<tr>
<th>Kuormitus- ja tuentatapaukset</th>
<th>k_{kl}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.075</td>
</tr>
<tr>
<td></td>
<td>0.070</td>
</tr>
<tr>
<td></td>
<td>0.065</td>
</tr>
<tr>
<td></td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>0.065</td>
</tr>
<tr>
<td></td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>0.040</td>
</tr>
</tbody>
</table>

5.1.3 Leikkaus

Leikkausvoimia laskettaessa voidaan palkin yläreunaa vaikutavia kuormia pienentää lineaarisesti, mikäli ne ovat lähempänä kuin palkin korkeuden etäisydellä tuulta. Lovien vaikutus palkin lujuuteen lasketaan luotettavan selvityksen perusteella.

Liimapuukannattajissa vedettyyn reunaan saa tehdä loveuksia vain VTT:n erityislevyksen perusteella.

5.1.4 Taivutus ja normalivoima

Vedon ja taivutuksen rasittamassa palkissa tarkistetaan, että vedetyllä alueella

$$\frac{\delta_1}{\delta_2} \leq 1 \tag{5.4}$$

Puristuksen ja taivutuksen rasittamassa palkissa tarkistetaan, että puristetulla alueella

$$\frac{\delta_1}{f_c} + \frac{\delta_1}{f_b} \leq 1 \tag{5.5}$$
5.1.5 Nurjahdusalttiin sauvan mitoitus
Nurjahdusalttiissa sauvassa tarkistetaan, että
\[\frac{2 \sqrt{\frac{2}{k}} + 18}{18} \leq 1 \] (5.6)
jossa
- \(k \) on kuvasta 5.3 saatava kerroin.

Kuvan 5.3 merkinnät ovat:
\(\lambda \) on puristetun rakenteen hoikkuus \((= L/f)\), enintään 170.
\(L_c \) on nurjahduspituus, joka tavallisille tuentatapauksille annetaan taulukossa 5.4
\(i \) on poikkileikkauskun jähyysläde \((=\sqrt{I/A})\).

\(k \)-kerrointa määritetäessä on otettu huomioon puristusvoiman alkuepäkesisyys, joka koostuu sauvan kärryydestä, kuorman epäkesisyysistä ja poikittais-kuormien aiheuttamasta taipumusta. Sauvan normaaliwayne on epäkesisyysen aiheuttamaa taivutusjännitystä ei tarvitse erikseen ottaa huomioon. Normaalisti riittää kuvan 5.3 tapauksen \(w = L/400 \) alkuepäkesisyys.

![Kuva 5.3](image)

Kuva 5.3
Nurjahdukseen huomioon ottava kerroin \(k \)

Taulukko 5.4.
Puristussauvan nurjahduspituudet \((L)\) eri tukenista-tapauksille, kun sauvan pituus on \(L \)

<table>
<thead>
<tr>
<th>Tuotetapa</th>
<th>Nurjahduspituus (L_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauva on jäykästi kiinnitettty molemmista päistään</td>
<td>0,7L</td>
</tr>
<tr>
<td>Sauva on jäykästi kiinnitettty toisesta ja nivellissä toisesta päistään</td>
<td>0,85L</td>
</tr>
<tr>
<td>Sauva on nivellöity molemmista päistään</td>
<td>1,0L</td>
</tr>
<tr>
<td>Sauva on jäykästi kiinnitettty toisesta päistä</td>
<td>1,5L</td>
</tr>
<tr>
<td>Sauva on jäykästi kiinnitettty toisesta suunnallaan, muttei asennuksella</td>
<td>2,5L</td>
</tr>
<tr>
<td>Sauva on jäykästi kiinnitettty toisesta päistään ja toisesta päistään tapahtuu</td>
<td></td>
</tr>
</tbody>
</table>

5.1.6 Lisäohjeita

Mekaanisilla liittimillä koottuja palkkeja suunniteltaessa otetaan huomioon, ettei palkin jähyysmomenttia ja taivutusvastusta voida olettaa koko poikkileikkauskasta yhtenäiseksi, vaan homogeeniselle poikkileikkauskelle laskettu arvo on kerrottava pienempi kertoimella.

5.2 Liitokset
Liitokset jaetaan
- mekaanisiin liitoksiin
- liimaliitoksiin (varsinaiset liimaliitokset ja naulaliimatokset)

Kantavien rakenteiden liitokset mitoitetaan murtorajatilan (lujuus) ja tarvittaessa myös käyttörajatilan (muodonmuutoset) mukaan. Eille korjauskertoimia ole annettu kuormien aikaloukkilta ja kosteusluokilta, käytetään taulukon 4.2 kertoimia.

Jos käytetään epäsymmetrisiä liitoksia tai liitokseen tuleva voima on epäkeskinen, otetaan syntyyvät lisärahatut huomioon liitoksen lujuutta laskettaessa.

Käytettäessä eri liitintyyppijä samalla liitoksessa ote- taan huomioon liitinten jäykkyydet ja niiden vaikutus voimien jakaumuihin. Liiman ja mekaanisen liitimen ei lasketa toimivan yhdessä Mikäli liitintiä on peräkkäin enemmän kuin 10, lasketaan 10 liintiä täysimääräisiä ja muista 2/3.
5.2.1 Mekaaniset liitokset

Naulaliitokset

Naulaliitoksen naulojen pienimmät sallittavat etäisyydet on annettu kuvassa 5.4. Lisäksi on huomattava seuraavaa:

— Naulat lyödään kohtisuoraan syyn suuntaa vastaan. Syyn suuntaan lyödyn naulan laskenta-arvoja alennetaan 70 %. Syyn suuntaan lyödyllä naulalla ei kuitenkaan ole ulosvetoljautua.
— Puun paksuuden on oltava yleensä vähintään 8 d. Lisäksi kärjen puoleisen puun on oltava niin paksu, että seuraavat vaatimukset täyttyvät (kuva 5.5):

kaksileikkeisissä liitoksissa $L_1 \geq 8 d$ ja yksileikkeisissä liitoksissa $L_2 \geq 12 d$ sileillä nauloilla ja $L_2 \geq 8 d$ kampa- ja kierrenauloilla.
— Mikäli $L_2 \geq 3 d$ (kuva 5.5), saavat eri puoliita lyödyt naulat koskettaa toisiaan.
— Naulojen pienimmille keskinäisille etäisyksille sallitaan 20 % hajontaa.
— Syyn suunnassa peräkkäiset naulat lyödään kuvan 5.6 mukaisesti naulapaksuuden verran syyn suunnasta sivuun halkeiluvaaran vuoksi.
— Mikäli liitoksen tulee laskelmien mukaan 1 tai 2 naulaa, lisättään liitoksen naulamääriä yhdellä.
— Yleensä naulat lyödään niin syvälle, että naulan kanta on puunpinnan tasossa.

Kuva 5.4

Naulojen pienimmät sallitut etäisyydet (yksikköä naulan paksuus d), kun puun paksuus $t \geq 8 d$
Kuva 5.5
Naulan kärjen ankkurointipituus eri tapauksissa (vrt. teksti) L_1 liittyy vuorotellen vastakkaisilta puolilta lyötyihin nauloihin ja L_2 samalta puolelta lyötyihin nauloihin.

Nelikulmaisilla lankanauloilla kootun puulitoisen ominaisleikkauslujuuden (F) saadaan taulukosta 5.5 edellyttäen, että liitos täyttää edellä annetut rakenteelliset ohjeet.

Liitetettäessä sahatavaralla pyöretään puutavaraan kerrotaan taulukon 5.5 arvot 0,65-ilä. Kahden pyöreän puun välillä liitosta ei pidetä voimia siirtävänä laitoksesta.

Profiloimattomia pyöreitä naulojia käytettäessä kerrotaan taulukon 5.5 arvot 0,8-ilä. Jos metallilevy liitetään puuhun, voidaan käyttää 1,25-kertaista arvoja.

Vanerin ja puun välisessä naulaliitoisessa koivuvaran vievia paiksuudeeltaan 3-kertaista, sekavanneri 2,5-kertaista ja havupuunvaran 2-kertaista puuta. Lastulevy ja puolikova kuitulevy vastaavat 2-kertaista ja kova kuitulevy 2,5-kertaista puuta.

Taulukko 5.5
Poikkileikkauseltaan nelioinmuotoisilla lankanauloilla kootun kahden puun välisen liitoksen ominaisleikkauslujuudet kuorman aikaluokassa B.

Yksikkö N/mm²

<table>
<thead>
<tr>
<th>Naulan paksuus d (mm)</th>
<th>Ominaisleikkauslujuudet</th>
<th>Kosteusluokat 1 ja 2</th>
<th>Kosteusluokat 3</th>
<th>Kosteusluokat 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,7</td>
<td>310</td>
<td>270</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>2,1</td>
<td>440</td>
<td>390</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>2,5</td>
<td>590</td>
<td>520</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>2,8</td>
<td>720</td>
<td>630</td>
<td>490</td>
<td></td>
</tr>
<tr>
<td>3,4</td>
<td>1 000</td>
<td>880</td>
<td>680</td>
<td></td>
</tr>
<tr>
<td>4,2</td>
<td>1 430</td>
<td>1 260</td>
<td>970</td>
<td></td>
</tr>
<tr>
<td>5,1</td>
<td>1 990</td>
<td>1 750</td>
<td>1 360</td>
<td></td>
</tr>
<tr>
<td>5,5</td>
<td>2 270</td>
<td>2 000</td>
<td>1 540</td>
<td></td>
</tr>
<tr>
<td>6,0</td>
<td>2 630</td>
<td>2 310</td>
<td>1 790</td>
<td></td>
</tr>
<tr>
<td>6,5</td>
<td>3 010</td>
<td>2 650</td>
<td>2 050</td>
<td></td>
</tr>
</tbody>
</table>

Kuorman aikaluokassa A kerrotaan arvot 0,7-ilä ja aikaluokassa C vastaavasti 1,7-ilä.

Jos liitetään pun paksuus $t < 8$ d, suurennetaan kuvan 5.4 syyx suuntaisia etäisyyskiä suoraviivaisesti siten, että kun $t = 4$ d, lisäys on 20 %, ja taulukon 5.5 lujuusarvoja pienennetään paksuusien suhteesa (kerroin $t/(8 \text{ d})$).

Naulaliitoisen tartuntalujuuden määritää naulan tartuntalujuus kärjen puoleisessa puussa, naulan läpimeno kannan puoleisesta osasta tai naulan vetolujuus. Naulaliitoisen ominaistartuntalujuus voidaan laskea kaavasta (5.7). Tällöin edellytetään, että naulat lyödään vähintään 45°:n kulmassa liitospintaan ja puun syyn suuntaan näähin.

$$f_d (L - 1,5 d) \begin{cases} f_d (t + L_3) & \text{kaikilla nauloiilla} \\ f_d (L_3) & \text{sileällä nauloiilla (5.7)} \\ f_d (L_4) & \text{kampa- ja kierrenauoilta} \end{cases}$$

f_d ja L_3 on annettu eri naulatyyppeille taulukossa 5.6. Kaavan muut merkinnät selviävät kuvasta 5.6.

Ensimmäisellä kaavalla tarkistetaan tartunta ja muilla kannan läpimenovoima.

Taulukko 5.6
Kaavan (5.7) kertoimet $f_d (N/mm²)$ ja L_3 eri naulatyypeille kuorman aikaluokissa B ja C. Aikaluokassa A $f_d (L)$ arvot kerrotaan 0,8-ilä, sileiden naulojen arvot kuitenkin 0,5-ilä. Kertoimet ovat samat kaikissa kosteusluokissa.

<table>
<thead>
<tr>
<th>Naulatyyppi</th>
<th>f_d</th>
<th>L_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyöreä naula</td>
<td>1,6</td>
<td>40 d</td>
</tr>
<tr>
<td>Nelikulmainen naula</td>
<td>1,6</td>
<td>40 d</td>
</tr>
<tr>
<td>Kierrenaula</td>
<td>5,2</td>
<td>10 d</td>
</tr>
<tr>
<td>Kampanaula</td>
<td>7,3</td>
<td>8 d</td>
</tr>
<tr>
<td>Kuumasinkitty naula</td>
<td>3,1</td>
<td>17 d</td>
</tr>
<tr>
<td>(nелиkulmainen)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kuva 5.6
Kaavan (5.7) merkintöjä

$$L \geq 12 \text{ d sileällä naulolla ja}$$
$$L \geq 8 \text{ d kampa- ja kierrenauoilta}$$

Ruuvi- ja pulttiliitoiset

Ruuvi- ja pulttiliitoisten liittimien pienimmät sallittavat etäisyydet on annettu kuvassa 5.7. Kuusikantaruuviele edellytetään, että ruuvin sileän osan pituus on vähintään liitetään osan paksuus, Ankkurointipituus kärjen puoleisessa puussa on yleensä oltava vähintään 8 d. Kuusikantaruuviele porataan reikä, jonka hal-
kaisija ruuvin sileällä osalla on sama kuin ruuvin halkaisija ja kierteisellä osalla sydänläpimittä.

Pulttiliitoksissa reikä porataan pultin halkaisijan mukaan ilman tarpeentonta väljyttää. Sekä kannan että mutterin alla käytetään aluslevyä, jonka sivun pituus on vähintään 3 d ja paksuus 0,3 d, jossa d on pultin halkaisija. Alle 5 mm paksua aluslevyä ei saa käyttää. Pultit kiristetään siten, että liitettävät osat tulevat tiukasti toisiaan vasten. Liitosten myöhemmän kiristämisn tulee olla mahdollista.

Ruuvi- ja pulttiliitosten ominaislujuudet on esitetyt kuorman aikaluokassa B sekä kosteusluokissa 1 ja 2. Aikaluokassa A kerrotaan ominaislujuudet luvulla 0,8 ja aikaluokassa C luvulla 1,3. Kosteusluokassa 3 ominaislujuudet kerrotaan luvulla 0,75 ja kosteusluokassa 4 luvulla 0,67.

Pulttiliitosten ominaisleikkauslujuudet (yksikkö N/leike) lasketaan kaavasta (5.8). Pienimmän arvon antava kaava on määrävä. Tällöin edellytetään, että puuosat ovat vähintään lujuusluokkaa T18 ja pultin materiaalin myötäraja $f_y \geq 240 \text{ N/mm}^2$. Lisäksi liitoksen on täytettävä edellä annetut rakenteelliset ohjeet.

\[F \leq \begin{cases}
5 (k_1 t_1 + k_2 t_2) d & \text{(vain 1-leikkeisessä)} \\
9,5 k_1 t_1 d & \text{(vain 2-leikkeisessä)} \\
19 k_1 t_1 d & \text{(c)} \\
3k_1 t_1 d + 17 d^2 & \text{(d)} \\
33 d^2 \sqrt{0,5 (k_1 + k_2) f_y} / 240 & \text{(e)}
\end{cases} \]

Kuva 5.7 Sähkökunta KUVA 8.7

Pienimmät ruuvin- ja pulttvälit sekä päätte-etäisyytet. Yksikköä ruuvin ja pultin halkaisija d. Kahdessa kuvassa oleva mita a määritetty seuraavasti:

\begin{align*}
\text{Jos} & \quad \alpha \leq 30^\circ, \; \text{niin} \; a = 7 \\
\text{Jos} & \quad 30^\circ < \alpha \leq 50^\circ, \; \text{niin} \; a = 6 \\
\text{Jos} & \quad 50^\circ < \alpha \leq 70^\circ, \; \text{niin} \; a = 5 \\
\text{Jos} & \quad \alpha > 70^\circ, \; \text{niin} \; a = 4
\end{align*}
Taulukko 5.7.
Kaavojen (5.8) ja (5.9) kertoimet

Voiman ja puun syyn suunnan väli- nen kulma	Halkaisijat d (mm)		
	6	12	24
0°	1	1	1
30°	0,88	0,82	
45°	0,79	0,70	
60°	0,70	0,58	
90°	0,64	0,52	

\[
F \leq \frac{19k_1t_{d}}{4k_1t_{d} + 14d^2} \frac{\sqrt{f_y}}{33d^2\sqrt{0.5(k_1 + k_2)^2}} \sqrt{\frac{f_y}{240}} \quad (5.9)
\]

jossa
- \(t \) on kannan puoleisen puun paksuus (mm)
- \(d \) on ruuvin sileän osan halkaisija (mm)
- \(f_y \) on ruuvin materiaalin myötäraja (N/mm²)
- \(k_1 \) ja \(k_2 \) ovat taulukosta 5.7 saatavia kertoimia

Metallilevyn ja puun välisen liitoksen ominaisleikkauslujuus voidaan laskea kaavasta

\[
F = 34d^2\sqrt{0.5(1 + k_2)\sqrt{f_y/240}} \quad (5.10)
\]

Jos levyn paksuus on \(\leq 2 \) mm ja ruuvin tai puutin suurin halkaisija \(\geq 12 \) mm, tarkistetaan lisäksi levyn reunapristus.

Mikäli ankkurointipituus on \(< 8 \) d, vähennettää kaa-voista (5.9) ja (5.10) määritettyjä lujuusia ankkurointi- pituuskien suhteessa. Ankkurointipituuden on kuitenkin oltava \(\geq 4 \) d.

Puuruuvin ja puusiskoantaruuvin ominaistuntavoina (yksikkö N) lasketaan kaavalla

\[
F = (15 + 7.5d) (L—1.5d) \quad (5.11)
\]

jossa
- \(d \) on ruuvin halkaisija (mm)
- \(L \) on ruuvin kierteisen osan pituus (mm).

Tällöin ankkurointipituus saa olla pienempi kuin 8 d.

Vaarnaliitokset

Vaarnaliitokseissa määräytyvät vaaroien pienimmät sallitut etäisyydet taulukon 5.8 mukaan. Vaarnat ja pulit sijoitetaan pareittain symmetrisesti sauvan keskivivan suhteen. Samalla ne sijoitetaan mahdollisuus- sien mukaan syyn suunnasta vuorotellen vastakkaisille puolille poiketen, etteivät puun mahdolliset kustumishalkeamat pääse vaarantumaan kaikkien samaan pituussuuntaiseen jonoon kuuluvien liittimien kantokykyi.

Taulukko 5.8.
Vaarojen pienimmät sallitut etäisyydet

<table>
<thead>
<tr>
<th>D (mm)</th>
<th>Puristettava vaarna</th>
<th>Nelikulmainen</th>
<th>Asennettava vaarna</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,60 D</td>
<td>1,25 D</td>
<td>1,50 D</td>
<td>2,00 D</td>
</tr>
<tr>
<td>0,70 D</td>
<td>1,20 D</td>
<td>1,20 D</td>
<td>1,30 D</td>
</tr>
<tr>
<td>0,80 D</td>
<td>1,25 D</td>
<td>1,50 D</td>
<td>1,75 D</td>
</tr>
</tbody>
</table>

Liitosten muodonmuutokset

Leikkausvoiman rasittaman liitoksen muodonmuutos voidaan laskea kaavasta

\[
\delta = \frac{q}{k} \quad (5.12)
\]

joska
- \(q \) on liitoksen liitintä rasittava leikkausvoima ja
- \(k \) on siirtymäkerroin, joka saadaan silille lankanauloille, puuruuveille ja puliteille taulukosta 5.9.
Taulukko 5.9

Kaavan (5.12) siirtymäkerroin k (N/mm) liitetäessä puuta puuhun

<table>
<thead>
<tr>
<th>Aikaluokka</th>
<th>Naulaliitos</th>
<th>Puuruviliitos</th>
<th>Pulttiliitos</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100 d</td>
<td>60 d</td>
<td>60 d*</td>
</tr>
<tr>
<td>B</td>
<td>300 d</td>
<td>160 d</td>
<td>160 d*</td>
</tr>
<tr>
<td>C</td>
<td>440 d</td>
<td>240 d</td>
<td>240 d*</td>
</tr>
</tbody>
</table>

*) Pulttiliitoksen siirtymäarvo on lisättäin 0,05 d, joka ottaa huomioon ruuvin mahdollisen välityyden

Kosteusluokassa 3 kerrotaan taulukon 5.9 arvot 0,6:lla, ja kosteusluokassa 4 kertoimella 0,4.

5.2.2 Liimaliitokset

Jatkuvassa liimasuomassa, kuten lamellien välisessä liimasuomassa sekä laipan ja uuman välisessä saumas-sa, liitoksen lujius on sama kuin heikkomman liitettä-vän osan materiaalin leikkauslujuus.

Muiden liimaliitosten lujutta pienemmetään yllä olevasta, mikäli jännitykset eivät jakaudu tasan liitospin-nassa. Työmaalla tehtyli liimausta ei yleensä oteta huomioon liitoksen cantokkykyä laskettaessa.

5.3 Levy rakenteet

5.3.1 Levyumuaiset palkit

Levyumuaisilla palkeilla tarkoitetaan rakennetta, jossa paarteita yhdistävää levy toimii pääasiassa leikkaus- jännityksiä ottavana rakennosana.

Paarteiden jännityksiä tarkistetaan kaavalla

$$\frac{|\sigma_{lm}|}{f} + \frac{|\sigma_{L} - \sigma_{lm}|}{f_b} \leq 1 \quad (5.13)$$

Kuva 5.8

Ohutuumaisten palkkien merkintöjä

$$V \leq f_{vp} \cdot f_{b} (h_u + h_s) \quad \text{kun} \quad h_s \leq h_{max} \quad (5.14)$$

jossa

σ_{lm} on laskentakuormien aiheuttama jännitys paar-teen poikkileikkausen painopisteessä

σ_{L} on laskentakuormien aiheuttama reunanjännitys

σ_{b} on σ_{lm}-lää vastaava laskentalujus (puristus tai veto)

σ_{b} on taivutuksen vastaava laskentalujus

Kiepahdusvaara tarkistetaan kohdan 5.1.2 mukaan.

Leikkauskapasiteetti lasketaan kuvan 5.8 leikkauskis-sa I—I ja II—II. Jos $h_s < h_{max}$, jossa h_{max} saadaan taulukosta 5.10, voidaan uuman leikkauskapasiteetti laskea ilman lomahdustarkastelua yhtä uumalevyä kohti kaavalla

$$V \leq f_{vp} \cdot f_{b} (h_u + h_s) \quad \text{kun} \quad h_s \leq h_{max} \quad (5.14)$$

jossa f_{vp} saadaan jakamalla standardista saatu arvo f_{vp} materiaalin osavarmuuskertoimalla.

Korkeammille uumille tehdään lomahdustarkastelu kohdan 5.3.3 mukaisesti.

Taulukko 5.10

Uumalevyn h_{max} korkeus eri materiaaleille

<table>
<thead>
<tr>
<th>Levyomateriaali</th>
<th>h_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaneri, kun pintaviilujen syyt ovat kohtisuorassa jännevällä vastaan</td>
<td>$45 f_s$</td>
</tr>
<tr>
<td>Puolikova kuitu- ja lastulevy</td>
<td>$35 f_s$</td>
</tr>
<tr>
<td>Kovalevy</td>
<td>$27 f_s$</td>
</tr>
</tbody>
</table>

Taipumaa laskettaessa otetaan huomioon myös leikkausvoiman aiheuttama lisätaipuma.
Kuva 5.9
Laatapalkkien merkintöjä

5.3.2 Laatapalkit
Laatapalkki muodostuu rivoista ja yhdestä tai kahdesta pintalevystä. Pintalevyn hyödyllinen leveys b_s saadaan kaavasta (5.15)

$$b_e = b_{le} + t_e \quad \text{(välieripa)}$$

$$b_e = 0.5 \cdot b_{le} + t_r \quad \text{(reunaripa)} \quad (5.15)$$

Merkinnät ovat kuvan 5.9 mukaiset. b_{le} saadaan taulukosta 5.11. Sitä ei kuitenkaan välita suuremmaksi kuin b_{max} eikä suuremmaksi kuin ripojen vapaa väli.
Leikkauskapasiteetti tarkistetaan leikkauskisassa I—I ja II—II (kuva 5.9). Jos ripojen vapaa väli on puristuspuolella pienempi kuin b_{max} (taulukko 5.11), ei lomahdusta tarvitse tarkistaa.

Taulukko 5.11
Liimataan pintalevyn hyödyllinen leveys

<table>
<thead>
<tr>
<th>Levymateriaali</th>
<th>b_{le}</th>
<th>Tassinen kuorma</th>
<th>Pistekuorma</th>
<th>b_{max}</th>
<th>h_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaneri, kun syyn suunta on kohtisuora palkin pituus suunta vastaan</td>
<td>L/7</td>
<td>L/10</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kuitu- ja lastulevy</td>
<td>L/3</td>
<td>L/5</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L on palkin momenttien nollakohtien välinen etäisyys</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kosteuden aiheuttamiin muodonmuutoksiin on kiinnitetty erityistä huomiota.

5.3.3 Lomahdus
Levyrekanteiden mitoituksessa otetaan tarvittaessa huomioon lomahdus. Myös leyn kostumisen aiheuttama lomahdus vaarataan tarvittaessa.
Levyuomainen palkin lomahdus voidaan yleensä ottaa huomioon tarkastelemalla vain leikkausjännityksen aiheuttamaa lomahdusta. Mikäli uuman ominaispaineelle leikkauslujus f_{vpk} on pienempi kuin kaavasta (5.16) saatava uuman lommahtamiseen tarvittava leikkausjännitys, ei lomahdusta tarvitse ottaa huomioon.

$$f_{vpkr} = 3.3 \cdot k \cdot E_k \left(\frac{t_c}{h_u} \right)^2 \quad (5.16)$$

joska

k on kuvasta 5.10 saatava kerroin,
E_k on uuman ominaiskimmomoduuli
t_c on uuman paksuus ja
h_u on uuman korkeus

Kuva 5.10
Lomahdusta laskettaessa tarvittava kerroin k

Kuvan 5.10 kerroin

$$k_2 = \frac{2 \cdot G_k}{E_k} \quad (5.17)$$

joska

G_k on uuman ominaisliukumoduuli ja
E_k on uuman ominaiskimmomoduuli

Kuvan 5.10 mitta a on uuman pystytuksen väli ja h on uuman korkeus.
Mikäli kaavasta (5.16) saatava lomahdusjännitys f_{vpkr} on pienempi kuin ominaispaineelle leikkauslujus f_{vpk}, käytetään f_{vpk}’n sijasta f_{vpkr}’ää.
6.1 Sovellutusalue

Nämä lahontorjuntaohjeet koskevat kantavien rakenteiden ohella sellaisia nihin liittyviä kantamattomia rakenteita, joiden kautta laho voi siirtyä kantaviin rakenteisiin.

6.2 Rakenteellinen suojaus

Rakenteellisella suojauskella tarkoitetaan rakentamistapaan kuuluvia tai siihen liittyviä toimenpiteitä, jotka estävät tai oleellisesti vähentävät rakenteen lahoamista. Puun rakenteellisella suojaussella pyritään:
- kostumisen estämiseen
- kuivumisen varmistamiseen
- muiden lahoamista edistävien tekijöiden rajoittamiseen.

Rakenteellisen suojauskseen kelvollisuus selvitetään, ellei kokemusperäisesti tiedetä rakenteen säilyvän lahoamatta vastaavissa olosuhteissa.

Rakenteellista suojausta koskevaa selvityksiä ei ole tarpeen suorittaa seuraavissa tapauksissa:
- puun kosteus on pysyvästi alle 0,20 tai
- puun on veden kyllästämä ja hapen saanti on estetty
tai
- puun lämpötila on alle +3°C tai yli 40°C.

Ellei rakenteellista suojausta voida toteuttaa, käytetään kohdan 6.3.5 tapauksissa SFS 3974 (RT 210.30) mukaisesti luokiteltua kemiiallisesti suojauttua puutavaaraa. Kuitenkin rakenteelliseen suojaukseen tulee pyrkiä riippumatta siitä, onko puutavara kemiiallisesti suojautta vai ei.

6.3 Kemiallinen suojaus

6.3.1 Puulajit

Kyllästettävänä puulajina käytetään mäntyä, jonka pintapuu voidaan täyskyllästää. Suojattujen puulevyjen valmistukseen voidaan käyttää muitakin puulajeja kuin mäntyä.

6.3.2 Kyllästeet

Käytettävien kyllästeiden tulee olla standardin SFS 3974 mukaisia (RT 210.30).

6.3.3 Suojausmenetelmät

6.3.4 Kyllästämällä suojaattujen puutuotteiden laadunvalvonta ja luokitus

Kyllästämällä suojatun puutavan laatu valvotaan ja luokitellaan standardin SFS 3974 (RT 210.30) mukaan.

6.3.5 Suojattujen puutuotteiden käyttö

Vähintään luokan A mukaisesti suojattuja puutuotteita käytetään, kun kantava pysyväksä tarkoitettu rakennuksetta puulaa vastaavissa olosuhteissa.

7

RAKENTAMINEN

7.1 Materiaalin ja rakennusosien säilytys työmaalla

Eri lujuusluokkiin kuuluvat rakennustarvikkeet (esim. lujuusluokiteltu sahatavara) säilytetään siten, etteivät ne sekoitu keskenään eivätkä joudu haitallisiin koesteleosohtusiin.

7.2 Rakennustarvikkeiden ennakotarkastus

7.3 Rakenteiden kokoaminen

Erittäinästi huolehditaan siitä, etteivät rakenteet halkeile liittimiä kohdalla.

Valmistaa rakneenosia liikuteltessa huolehditaan siitä, ettei nostotapa aiheuta rakennetta vaurioittavia rasia-
tuksia. Lisäksi tulee kiinnittää huomiota rakeneosan noston- ja asennusaikaiseen tuentaan, sillä tällöin monien rakneenosien stabiliteisuus on huono. Tällaisia rakneenosia voivat olla esim. pilarit, seinät, ristikot, liimapuukaaret sekä korkeat palkit.

7.4 Muodonmuutosten huomioonotto

Kantaviin puurakenteisiin syntyvien taipumien haitalta lisukutta voidaan pienentää antamalla rakenteelle sopiva esikorotus, joka ilmoitetaan rakennepirustuksissa. Rakenteita ei saa rakennusaikana yleensä kuormittaa käyttäen ominaiskuormia suurempia kuormia, jotka saatavat aiheuttaa pysyviä taipumia. Tällainen vaara on erityisesti silloin, kun rakenteiden materiaalin kos-teus on rakentamisen aikana suunnitelmissa esitettyä suurempi.

8.1 Mitoitusperusteet

Sunnitteluessa otetaan huomioon aina
— kuormitusyhistelmän aikaluokka
— rakenteen kosteusluokka
— rakenteen käyttökohde.

Mitoitusperusteina käytetään
— lujuutta ja
— muodonmuutoksia.

8.2 Laskennallinen mitoitus

8.2.1 Poikkileikkauksmitat

Sahatavarana odotettavan täyttävän kosteustilassa u = 0,20 poikkileikkaukan nimellismitojen suhteen seu-raavat vaatimukset:

+ 4 mm/—2 mm, kun mitta on alle 100 mm
+ 6 mm/—3 mm, kun mitta on 100 mm tai yli.

Laskelmat tehdään siinä poikkileikkausksessa, joka on määräväin. Poikkileikkauskseksi heikentykset otetaan huomioon seuraavia periaatteita noudattaen:

— Rakennesahatavanen lujuusluokitellussa sallittavia poikkileikkauskseksi heikentyksiä ei tarvitse ottaa huomioon.
— Vedetyisiä ja taivutetuissa rakenteissa otetaan huomioon lovetukset, aukot, pulttien reitit, vaamojen syvennykset jne.
— Kuitenkaan alle 6 mm paksojen naulojen heikenyksiä ei tarvitse ottaa huomioon.

8.2.2 Mitoitus

Rakennetta mitoitettaessa tarkistetaan, etteivät kuormien aiheuttamat jännitykset ylitä sallittuja jännityksiiä eivätkä kuormien aiheuttamat taipumat ylitä sallit-
tuja taipumia.

Kuorman aikaluokka

Kun kuormitusyhistelmät käsitellään kestoltaan erilaisia kuormia, valitaan kuormitusyhistelmän aikaluokka taulukon 8.1 mukaan.
Taulukko 8.1
Aikaluokan valinta

<table>
<thead>
<tr>
<th>Kuormitusyhdistelmä</th>
<th>Aikaluokka</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>A + B</td>
<td>B</td>
</tr>
<tr>
<td>A + B + C</td>
<td>C</td>
</tr>
</tbody>
</table>

Vaarallisina kuormitusyhdistelmäin määritellään mitoituksen.

Sallitut jännitykset ja kimmomoduulit

Sahatavaran sallitut jännitykset ja kimmomoduulit on annettu taulukoissa 8.2, 8.4 ja liimapuu vastaavat arvot taulukoissa 8.5 ja 8.6. Liitosten sallitut arvot on esitetty kohdassa 8.4.

Sallittujen jännitysten ja sallittujen kuormien korotuskerroin

Sallittuja jännityksiä ja sallittuja kuormia saa korottaa kuvasta 8.1 saatavalla korotuskertoimella.

Kuva 8.1
Sallitujen arvojen korotuskerroin rakenteen pysyvän kuorman g ja kokonaiskuorman q suhteen funktioina.

Taulukko 8.2
Sahatavaran T30 sallitut jännitykset ja kimmomoduulit eri kuormien aikaluokissa ja kosteusluokissa. Yksikkö MN/m²

Lujuuksia laukuttaessa	Aikaluokka		
	A	B	C
	Kosteusluokka	Kosteusluokka	Kosteusluokka
	1 2 3 4	1 2 3 4	1 2 3 4
Lujuuksia laukuttaessa	8 8 7.2 6.6	11.1 11.1 9.4 8.3	14.4 14.4 11.1 10.0
Taivutus σ_{nail}	8.5 8.5 6.9 6.3	10.6 10.6 9.0 7.9	13.7 13.7 10.6 9.5
Pariitus σ_{nail}	1.9 1.9 1.6 1.4	2.4 2.4 2.0 1.8	3.1 3.1 2.4 2.2
Veto σ_{nail}	5.8 5.8 4.7 4.3	7.2 7.2 6.1 5.4	9.8 9.8 7.2 6.5
Veto σ_{nail}	0.15 0.15 0.12 0.12	0.19 0.19 0.16 0.14	0.25 0.25 0.19 0.17
Leikkaus τ_{nail}	0.77 0.77 0.62 0.58	0.96 0.96 0.82 0.72	1.25 1.25 0.96 0.87
Leikkaus τ_{nail}	0.38 0.38 0.31 0.29	0.48 0.48 0.41 0.36	0.62 0.62 0.48 0.43

Muodonmuutosia laukuttaessa	Aikaluokka			
	B	C		
	Kosteusluokka	Kosteusluokka	Kosteusluokka	
	1 2 3 4	1 2 3 4	1 2 3 4	
Kimmomoduuli	E	5 600 4 900 4 200 2 500	7 000 7 000 5 600 4 200	9 100 9 100 7 000 5 600
Kimmomoduuli	E	180 160 140 80	230 230 180 140	300 300 230 180
Liukumoduuli	G0	280 250 210 120	350 350 280 210	460 460 350 280

1) nurjohdusta laukuttaessa
Taulukko 8.3
Sahatavaran T24 sallitut jännitykset ja kimmomoduulit eri kuormien aikaluokissa ja kosteusluokissa. Yksikkö MN/m²

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kosteusluokka 1</td>
<td>Kosteusluokka 2</td>
<td>Kosteusluokka 3</td>
</tr>
<tr>
<td>Ljuuksia laskettaessa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taivutus</td>
<td>7,7</td>
<td>7,7</td>
<td>6,2</td>
</tr>
<tr>
<td>Puristus</td>
<td>7,3</td>
<td>7,3</td>
<td>5,9</td>
</tr>
<tr>
<td>Puristus</td>
<td>1,9</td>
<td>1,9</td>
<td>1,6</td>
</tr>
<tr>
<td>Veto</td>
<td>5,0</td>
<td>5,0</td>
<td>4,1</td>
</tr>
<tr>
<td>Veto</td>
<td>0,15</td>
<td>0,15</td>
<td>0,12</td>
</tr>
<tr>
<td>Leikkaus</td>
<td>0,77</td>
<td>0,77</td>
<td>0,63</td>
</tr>
<tr>
<td>Leikkaus</td>
<td>0,38</td>
<td>0,38</td>
<td>0,31</td>
</tr>
<tr>
<td>Kimmomoduulit</td>
<td>4 000</td>
<td>3 500</td>
<td>3 000</td>
</tr>
<tr>
<td>Liukumoduuli</td>
<td>200</td>
<td>170</td>
<td>150</td>
</tr>
</tbody>
</table>

Taulukko 8.4
Sahatavaran T18 sallitut jännitykset ja kimmomoduulit eri kuormien aikaluokissa ja kosteusluokissa. Yksikkö MN/m²

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kosteusluokka 1</td>
<td>Kosteusluokka 2</td>
<td>Kosteusluokka 3</td>
</tr>
<tr>
<td>Ljuuksia laskettaessa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taivutus</td>
<td>6,2</td>
<td>6,2</td>
<td>5,0</td>
</tr>
<tr>
<td>Puristus</td>
<td>5,8</td>
<td>5,8</td>
<td>4,7</td>
</tr>
<tr>
<td>Puristus</td>
<td>1,9</td>
<td>1,9</td>
<td>1,6</td>
</tr>
<tr>
<td>Veto</td>
<td>3,1</td>
<td>3,1</td>
<td>2,5</td>
</tr>
<tr>
<td>Veto</td>
<td>0,15</td>
<td>0,15</td>
<td>0,12</td>
</tr>
<tr>
<td>Leikkaus</td>
<td>0,77</td>
<td>0,77</td>
<td>0,63</td>
</tr>
<tr>
<td>Leikkaus</td>
<td>0,38</td>
<td>0,38</td>
<td>0,31</td>
</tr>
<tr>
<td>Kimmomoduulit</td>
<td>3 200</td>
<td>2 800</td>
<td>2 400</td>
</tr>
<tr>
<td>Liukumoduuli</td>
<td>160</td>
<td>140</td>
<td>120</td>
</tr>
</tbody>
</table>

Muodonmuutoksia laskettaessa

1) nurjahdusta laskettaessa

1) nurjahdusta laskettaessa
Taulukko 8.5

Liimapuun L40 sallitut jännitykset ja kimmomoduulit eri kuormien aikaluokissa ja kosteusluokissa. Yksikkö MN/m²

<table>
<thead>
<tr>
<th>Aikaluokat</th>
<th>Kosteusluokat</th>
<th>Kosteusluokat</th>
<th>Kosteusluokat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 2 3 4</td>
<td>1 2 3 4</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>Lajuusia laskettaessa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taivutus σ_{ult}</td>
<td>11,9 11,9 9,7 8,9</td>
<td>14,9 14,9 12,7 11,2</td>
<td>19,4 19,4 14,9 13,4</td>
</tr>
<tr>
<td>Puristus σ_{ult}</td>
<td>11,5 11,5 9,4 8,7</td>
<td>14,4 14,4 12,3 10,8</td>
<td>18,8 18,8 14,4 13,0</td>
</tr>
<tr>
<td>Puristus σ_{ult}</td>
<td>1,9 1,9 1,6 1,4</td>
<td>2,4 2,4 2,0 1,8</td>
<td>3,1 3,1 2,4 2,2</td>
</tr>
<tr>
<td>Veto σ_{ult}</td>
<td>8,1 8,1 6,6 6,1</td>
<td>10,1 10,1 8,6 7,6</td>
<td>13,1 13,1 10,1 9,1</td>
</tr>
<tr>
<td>Veto σ_{ult}</td>
<td>0,15 0,15 0,12 0,12</td>
<td>0,19 0,19 0,16 0,14</td>
<td>0,25 0,25 0,19 0,17</td>
</tr>
<tr>
<td>Leikkaus τ_{ult}</td>
<td>0,92 0,92 0,75 0,69</td>
<td>1,15 1,15 0,98 0,87</td>
<td>1,50 1,50 1,15 1,04</td>
</tr>
<tr>
<td>Leikkaus τ_{ult}</td>
<td>0,46 0,46 0,37 0,35</td>
<td>0,58 0,58 0,49 0,43</td>
<td>0,75 0,75 0,58 0,52</td>
</tr>
<tr>
<td>Kimmomoduuli1) E</td>
<td>5 300 4 600 4 000 2 300</td>
<td>6 600 6 600 5 300 4 000</td>
<td>8 600 8 600 6 600 5 300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muodonmuutoksia laskettaessa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kimmomoduuli E</td>
</tr>
<tr>
<td>Kimmomoduuli E</td>
</tr>
<tr>
<td>Liukumoduuli G</td>
</tr>
</tbody>
</table>

1) nurjahdusta laskettaessa

Taulukko 8.6

Liimapuun L30 sallitut jännitykset ja kimmomoduulit eri kuormien aikaluokissa ja kosteusluokissa. Yksikkö MN/m²

<table>
<thead>
<tr>
<th>Aikaluokat</th>
<th>Kosteusluokat</th>
<th>Kosteusluokat</th>
<th>Kosteusluokat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 2 3 4</td>
<td>1 2 3 4</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>Lajuusia laskettaessa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taivutus σ_{ult}</td>
<td>9,6 9,6 7,8 7,2</td>
<td>12,0 12,0 10,2 9,0</td>
<td>15,6 15,6 12,0 10,8</td>
</tr>
<tr>
<td>Puristus σ_{ult}</td>
<td>9,2 9,2 7,5 6,9</td>
<td>11,5 11,5 9,8 8,7</td>
<td>15,0 15,0 11,5 10,4</td>
</tr>
<tr>
<td>Puristus σ_{ult}</td>
<td>1,9 1,9 1,6 1,4</td>
<td>2,4 2,4 2,0 1,8</td>
<td>3,1 3,1 2,4 2,2</td>
</tr>
<tr>
<td>Veto σ_{ult}</td>
<td>6,5 6,5 5,3 4,9</td>
<td>8,2 8,2 6,9 6,1</td>
<td>10,6 10,6 8,2 7,4</td>
</tr>
<tr>
<td>Veto σ_{ult}</td>
<td>0,15 0,15 0,12 0,12</td>
<td>0,19 0,19 0,16 0,14</td>
<td>0,25 0,25 0,19 0,17</td>
</tr>
<tr>
<td>Leikkaus τ_{ult}</td>
<td>0,92 0,92 0,75 0,69</td>
<td>1,15 1,15 0,98 0,87</td>
<td>1,50 1,50 1,15 1,04</td>
</tr>
<tr>
<td>Leikkaus τ_{ult}</td>
<td>0,46 0,46 0,37 0,35</td>
<td>0,58 0,58 0,49 0,43</td>
<td>0,75 0,75 0,58 0,52</td>
</tr>
<tr>
<td>Kimmomoduuli1) E</td>
<td>4 400 3 900 3 300 1 900</td>
<td>5 500 5 500 4 400 3 300</td>
<td>7 200 7 200 5 500 4 400</td>
</tr>
<tr>
<td>Liukumoduuli G</td>
<td>220 190 160 90</td>
<td>270 270 220 160</td>
<td>360 360 270 220</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muodonmuutoksia laskettaessa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kimmomoduuli E</td>
</tr>
<tr>
<td>Kimmomoduuli E</td>
</tr>
<tr>
<td>Liukumoduuli G</td>
</tr>
</tbody>
</table>

1) nurjahdusta laskettaessa
Jos liimapuupalkissa on eri lujuusluokkia olevaa puutavaraa, sen taivutuskapasiteetti voidaan laskea ulkolammien (uolimman kuudenneksen) mukaan. Poikkeuskauksen muut kapasiteettit lasketaan kimmomoduulien suhteen painotettuna.

Liimapuupalkkin korkeudessa ylitässä 300 mm vähennetään sellittua taivutusjännitystä kertomella.

\[C_P = \left(\frac{300}{h} \right)^{1.6} \]

jossa \(h \) = palkin korkeus (mm).

<table>
<thead>
<tr>
<th>(h) (mm)</th>
<th>300</th>
<th>600</th>
<th>1 000</th>
<th>1 500</th>
<th>2 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_P)</td>
<td>1.0</td>
<td>0.93</td>
<td>0.87</td>
<td>0.84</td>
<td>0.81</td>
</tr>
</tbody>
</table>

8.3 Rakenneosien mitoitus

8.3.1 Suorat palkit ja pilarit

Veto ja puristus

Vedetyn sauvan mitoituksessa tarkistetaan, että

\[\sigma_c \leq \sigma_{c\text{,sall}} \] \hspace{1cm} (8.1)

jossa

\(\sigma_c \) on kuormien aiheuttama vetojännitys ja \(\sigma_{c\text{,sall}} \) on sellittu puristusjännitys

Puristussauvan mitoituksessa tarkistetaan, että

\[\sigma_c \leq \sigma_{c\text{,sall}} \] \hspace{1cm} (8.2)

jossa

\(\sigma_c \) on kuormien aiheuttama puristusjännitys ja \(\sigma_{c\text{,sall}} \) on sellittu puristusjännitys

Mikäli puristusrasitus on kulmassa \(\alpha \) syyn suuntaan nähden, on sellittu puristusjännitys

\[\sigma_{c\text{,sall}} = \sigma_{c\text{,sall}} - (\sigma_{c\text{,sall}} - \sigma_{c\text{,f}}) \sin \alpha \] \hspace{1cm} (8.3)

joissa

\(\sigma_{c\text{,sall}} \) on sellittu puristusjännitys kulmassa \(\alpha \) suuntaan nähden

\(\sigma_{c\text{,f}} \) on sellittu puristusjännitys syyn suuntaan

\(\sigma_{c\text{,f}} \) on sellittu puristusjännitys kohtisuoraan syyn suuntaan vastaan

Kuva 8.2

Puristus kulmassa \(\alpha \) syyn suuntaan nähden

Kuva 8.3

Kiskopaine (mitat mm)

Kuvan 8.3 mukaisen kiskopaineen vaikutessa voidaan sellittua jännitystä \(\sigma_{c\text{,sall}} \) korottaa kertomella

\[k = \frac{4}{\sqrt{150/L}} \leq 1,8 \] \hspace{1cm} (8.4)

jossa

L on kuvan 8.3 mukainen kuormitusalueen pituus. Sama koskee leimapainetta.

Taulukossa 8.7 on annettu eräitä k-kertoimen arvoja.

Taulukko 8.7

Kaavat (8.4) k-kerroin

<table>
<thead>
<tr>
<th>(L) (mm)</th>
<th>(\leq 15)</th>
<th>30</th>
<th>50</th>
<th>100</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k) \hspace{1cm}</td>
<td>1,8</td>
<td>1,5</td>
<td>1,3</td>
<td>1,1</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Taivutus

Taivutetulle palkille tarkistetaan, että

\[\sigma_b \leq \sigma_{b\text{,sall}} \] \hspace{1cm} (8.5)

jossa

\(\sigma_b \) on kuormien aiheuttama taivutusjännitys

\(\sigma_{b\text{,sall}} \) on sellittu taivutusjännitys.

Kiepahdus

Suorakaiteen muotoisen suoran palkin kiepahdusta ei tarvitse tarkistaa, jos

\[\frac{h L}{b^2} \leq 100 \] \hspace{1cm} (8.6)

jossa

\(h \) on palkin korkeus,

\(L \) on palkin poikittaissiteiden väli

\(b \) on palkin leveys.

Leikkaus

Massiivisen suorakaidepalkin leikkausjännitys tarkistetaan kaavalla

\[\tau \leq \tau_{sall} \] \hspace{1cm} (8.7)

jossa

\(\tau \) on kuormien aiheuttama leikkausjännitys

\(\tau_{sall} \) on sellittu leikkausjännitys
Leikkausvoimia laskettaessa voidaan palkin yläreunaan vaikuttavia kuormia pienentää lineaarisesti, mikäli ne ovat lähempänä kuin palkin korkeuden etäisyydellä tuelta. Kun a on kuorman etäisyys tuelta ja h on palkin korkeus, niin leikkausvoima kerrotaan suhteella a/h. Lovien vaikutus palkin lujutuneen lasketaan luotettavan selvyyksen perusteella.

Liimapuukannattajissa vedettyyn reunaan saa tehdä loveuksia vain VTT:n erityisselvyyksen perusteella.

Taivutus ja normaalivoima

Vedon ja taivutuksen rasittamassa palkissa tarkistetaan, että vedettyllä alueella

\[
\frac{\sigma_{i}}{\sigma_{\text{taill}}} + \frac{\sigma_{b}}{\sigma_{\text{ball}}} \leq 1 \tag{8.8}
\]

Puristuksen ja taivutuksen rasittamassa palkissa tarkistetaan, että puristetulla alueella

\[
\frac{|\sigma_{i}|}{\sigma_{\text{taill}}} + \frac{|\sigma_{b}|}{\sigma_{\text{ball}}} \leq 1 \tag{8.9}
\]

Edellä olevissa kaavoissa

- \(\sigma_{i}\) on kuormien aiheuttama vetojännitys
- \(\sigma_{b}\) on kuormien aiheuttama taivutusjännitys
- \(\sigma_{c}\) on kuormien aiheuttama puristusjännitys
- \(\sigma_{\text{taill}}\) ja \(\sigma_{\text{ball}}\) ovat vastaavat sallitut jännityskset.

Nurjahdusalltiin sauvan mitoitus

Nurjahdusalttiissa sauvassa tarkistetaan, että

\[
\frac{|\sigma_{i}|}{k_{c}\sigma_{\text{taill}}} + \frac{|\sigma_{b}|}{\sigma_{\text{ball}}} \leq 1 \tag{8.10}
\]

jossa

- \(k_{c}\) on kuvasta 8.4 saatava kerroin.

Kuvan 8.4 merkinnät ovat:

- \(\lambda\) on puristetun rakenteen hoikkuus (=L_e/i), enintään 170
- \(L_{e}\) on nurjahduspuito, joka tavallisille tuentatauksiin annetaan taulukossa 8.8
- \(i\) on poikkileikkausen jätähyyside (= I/A)
- \(k_{c}\) - kerrointa määriteltäessä on otettu huomioon puristusoivaa alkupäkekäsikysy, joka koostuu sauvan käyrystä, kuorman epäkeskisyystä ja poikittaisvoimien aiheuttamasta taipumasta. Sauvan normaalivoiman epäkeskissyystä aiheuttuvaa taivutusjännitystä ei tarvitse erikseen ottaa huomioon. Normaalisti riittää kuvan 8.4 tapauksen w = L/400 alkupäkekäsikysys.

Taulukko 8.8

<table>
<thead>
<tr>
<th>Tusentapauks</th>
<th>Nurjahduspuito L_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauva on jäykästä kiinnitetty molemmista päätään</td>
<td>0,7 L</td>
</tr>
<tr>
<td>Sauva on jäykästä kiinnitetty toisesta ja nivellellisesti toisesta päästään</td>
<td>0,85 L</td>
</tr>
<tr>
<td>Sauva on nivellöity molemmista päätään</td>
<td>1,0 L</td>
</tr>
<tr>
<td>Sauva on jäykästä kiinnitetty toisesta päästään ja toisesta päästään kiinnitetty suunnalleen</td>
<td>1,5 L</td>
</tr>
<tr>
<td>Sauva on jäykästä kiinnitetty toisesta päästään ja toisesta päästään vapaa</td>
<td>2,5 L</td>
</tr>
</tbody>
</table>

8.3.2 Lisäohjeita

Kaarevissa palkeissa tarkistetaan kaarevudesta Joh- tuvat lamelleja vastaan kohtisuorat lisärauheet.

Mikäli käyrällä palkkia rasittaa taivutusmomentti, joka pyrkii oikaisemaan sitä, syntyy palkkiin poikittaisia syyyn suuntaa vastaan kohtisuoria vetojännityksiä. Vakiokorkuisen käytän suorakaidepalkin poikittainen vetojännitys voidaan laskea kaavasta

\[
\sigma_{11} = \frac{1,5 M}{R_{m} h} \tag{8.11}
\]

jossa

- \(\sigma_{11}\) on poikittainen vetojännitys,
- M on taivutusmomentti
- \(R_{m}\) on painopisteakselin kaarevuuslade
- b on palkin leveys
- h on palkin korkeus.

Palkkia mitoittettaessa on osoitettava, että

\[
\sigma_{11} \leq \sigma_{11\text{taill}} \tag{8.12}
\]

jossa

- \(\sigma_{11}\) on syyyn suuntaa vastaan kohtisuorassa oleva kuormien aiheuttama vetojännitys
- \(\sigma_{11\text{taill}}\) on sallittu poikittainen vetojännitys.
Naulat lyödään kohtisuoraan syyn suuntaa vastaan. Syyn suuntaan lyödyn naulun sallittuja arvoja alennetaan 70 %. Syyn suuntaan lyödylä naulalla ei kuitenkaan ole ulosvetolujuutta.

Puun paksuuden on oltava yleensä vähintään 8d. Lisäksi kärjen puoleisen puun on oltava niin paksu, että seuraavat vaatimukset täyttävät (kuva 8.6): kaksileikkeissä liitoksissa \(L_1 > 8d \) ja yksileikkeissä liitoksissa \(L_2 > 12d \) sileillä nauloilla ja \(L_2 > 8d \) kampa- ja kiernauloilla.

Mikäli \(L_1 > 3d \) (kuva 8.6), saavat eri puolita lyödyt naulat koskettaa toisiaan.

Naulojen pienimmille keskinäisille etäisyyksille sallitaan 20 %:n hajonta.

Syyyn suunnassa perikkäiset naulat löydään kuvan 8.5 mukaisesti naulanpaksuuden verran syyn suunnasta sivuun halkeiluvuaran vuoksi.

Mikäli liitokseen tulee laskelmien mukaan 1 tai 2 naulaa, lisätään liitoksen naulamääriä yhdellä.

Yleensä naulat lyödään niin syvälle, että naulan kanta on puunpinnan tasossa.

Nelikulmaisilla lankanauloilla kootun puuliitoksen sallittu leikkausvoima (N/leike) saadaan taulukosta 8.9 edellä mainitun, että liitos täyttää edellä annetut rakenteelliset ohjeet.

Liitetessä sahatavaraa pyöreän puuttavaan kerrotaan taulukon 8.9 arvot 0,65:lla. Kahden pyöreän puun vähäistä liitosta ei pidetä voimia siirtävänä liitoksena. Profiloimattomia pyöreitä nauloja käytettäessä kerrotaan taulukon 8.9 arvot 0,8:lla. Jos metallilevy liitettää puuhun, voidaan käyttää 1,25-kertaista arvoja.

Vaneerin ja puun välisessä naulaliitoiksessä koivuvaneri vastaa paksuudeltaan 3-kertaista, sekavaniereit 2,5-kertaista ja havupuuvaneri 2-kertaista puuta. Lastulevy ja puolikova puukuitulevy vastaavat 2-kertaista ja kova puukuitulevy 2,5-kertaista puuta.

Jos liitetävän puun paksuus \(t < 8d \), suurennetaan kuvan 8.5 syyn suunnaisia etäisyyksiä suoraviivaisesti siten, että kun \(t = 4d \), lisäys on 20 %. Taulukon 8.9 lujuusarvoja pienennetään paksuusen suhteen (kerroin \(t/(8d) \)).

Naulaliitoksen tartuntaljuuden määrittää naulan tartuntaljuus kärjen puoleisessa puussa, naulan läpimeno kannan puoleisesta puusta tai naulan katkeaminen. Naulan läpimenoon kannan puoleisesta puusta vaikutaa naulan kannan koko ja naulan vanren tartunta.

Naulaliitoksen sallitut tartuntavoimat saadaan taulukosta 8.10. Naulan kannan halkaisijan pitää olla vähintään 2,5 kertaa naulan paksus. Taulukon 8.10 arvoja käytettäessä edellytetään, että naulat lyödään vähintään 45°:n kulmassa liitospintaan ja puun syiden suuntaan nähdä.
Kuva 8.5
Naulojen pienimmät sallitut etäisyydet (yksikkönä naulan paksuus d), kun puun paksuus t>8d.

Taulukko 8.9
Poikkileikkaukseltaan nelikulmaisilla lankanauloilla kootun puun välisen liitoksen sallitut leikkauksvoimamat. Yksikkö N/leiike.

<table>
<thead>
<tr>
<th>Naulan paksuus x (pituus) (mm)</th>
<th>Aikaluokka</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kosteusluokka</td>
<td>Kosteusluokka</td>
<td>Kosteusluokka</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 ja 2</td>
<td>3</td>
<td>4</td>
<td>1 ja 2</td>
</tr>
<tr>
<td>1,7 x (50)</td>
<td>100</td>
<td>90</td>
<td>70</td>
<td>150</td>
</tr>
<tr>
<td>2,1 x (50)</td>
<td>150</td>
<td>130</td>
<td>100</td>
<td>210</td>
</tr>
<tr>
<td>2,5 x (60)</td>
<td>200</td>
<td>180</td>
<td>135</td>
<td>280</td>
</tr>
<tr>
<td>2,8 x (75)</td>
<td>240</td>
<td>210</td>
<td>160</td>
<td>350</td>
</tr>
<tr>
<td>3,4 x (100)</td>
<td>340</td>
<td>300</td>
<td>230</td>
<td>480</td>
</tr>
<tr>
<td>4,2 x (125)</td>
<td>480</td>
<td>420</td>
<td>330</td>
<td>690</td>
</tr>
<tr>
<td>5,1 x (150)</td>
<td>670</td>
<td>590</td>
<td>460</td>
<td>960</td>
</tr>
<tr>
<td>5,5 x (200)</td>
<td>760</td>
<td>670</td>
<td>520</td>
<td>1100</td>
</tr>
<tr>
<td>6,0 x (225)</td>
<td>890</td>
<td>780</td>
<td>600</td>
<td>1300</td>
</tr>
<tr>
<td>6,5 x (250)</td>
<td>1000</td>
<td>890</td>
<td>690</td>
<td>1450</td>
</tr>
</tbody>
</table>
Naulan kärjen ankurointitupus

Kuva 8.6

Naulan kärjen ankurointitupuus eri tapauksissa (vrt. teksti). L_i liittyy vuorotellen vastakkaisiin puolit lyötyihin nauloihin ja L_s samalta puolelta lyötyihin nauloihin.

Taulukko 8.10

Sallitut naulan tartuntoaikat pyöreille ja nelikulmaisille lankanauloille kaikkisissa kosteusluokississa.

<table>
<thead>
<tr>
<th>Näillä paksuus x (pituus) (mm)</th>
<th>Tarunta (N/mm²)</th>
<th>Kannan vaikutus (N)^(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A ja C</td>
<td>A</td>
</tr>
<tr>
<td>1,7 x (50)</td>
<td>1,1</td>
<td>1,3</td>
</tr>
<tr>
<td>2,1 x (50)</td>
<td>1,3</td>
<td>1,6</td>
</tr>
<tr>
<td>2,5 x (60)</td>
<td>1,5</td>
<td>1,9</td>
</tr>
<tr>
<td>2,8 x (75)</td>
<td>1,7</td>
<td>2,2</td>
</tr>
<tr>
<td>3,4 x (100)</td>
<td>2,1</td>
<td>2,6</td>
</tr>
<tr>
<td>4,2 x (125)</td>
<td>2,6</td>
<td>3,2</td>
</tr>
<tr>
<td>5,1 x (150)</td>
<td>3,1</td>
<td>3,9</td>
</tr>
<tr>
<td>5,5 x (200)</td>
<td>3,4</td>
<td>4,2</td>
</tr>
<tr>
<td>6,0 x (225)</td>
<td>3,7</td>
<td>4,6</td>
</tr>
<tr>
<td>6,5 x (250)</td>
<td>4,0</td>
<td>5,0</td>
</tr>
</tbody>
</table>

Naulan paksuuden väliralmarto voidaan interpoloida suoraviivaisesti.

1) Sileille nauloille näytetään aikalaukossa A 0,6-kertaisia arvoja. Kuumasinkityille nauloille käytetään 1,94-kertaisia, kierrenaulolle 3,25-kertaisia ja kampanauloille 4,5-kertaisia arvoja. Kuitenkin kierren- ja kampanauloon kannan puoleisella osalla ei laskea olevan tartuntaa.

2) Kannan vaikutus on sama kaikilla naulantyypeillä. Jos kannan halkaisija d_h < 2,5 d, niin arvot kerrotaan luvulla 0,67 (d_h/d-1).

Ruuvij- ja pulttilitiokset

Pulttilitioksissa reikä porataan pultin halkaisijan mukaan ilman tarpeetonta väljytyttä. Sekä kannan että mutterin alla käytettäen aluslevyä, jonka sivun pituus on vähintään 3 d ja paksuus 0,3 d, jossa d on pultin halkaisija. Alle 5 mm paksua levyä ei tule käyttää. Pultit kiristetään siten, että liitetettävät osat tulevat tiukasti toisiaan vasten. Liitosten myöhemmän kiristämisen tulee olla mahdollista.

Ruuvij- ja pulttilitioston sallitut arvot on esitetty kuorman aikalaukossa B sekä kosteusluokissa 1 ja 2. Aikalaukossa A kerrotaan sallitut lujuudet luvulla 0,8 ja aikalaukossa A/C luvulla 1,3. Kosteusluokissa 3 sallitut lujuudet kerrotaan luvulla 0,75 ja kosteusluokassa 4 luvulla 0,67.

Pulttilitioksen sallitut leikkausvoimat (ysikkö N/lei-ke) lasketaan kaavasta (8,13). Pienimmän arvon antava kaava on määrävä. Tällöin edellytetään, että puo- sat ovat vähintään lujuusluokkaa T18 ja ruuvin materiaalin myötöraja f_y ≥ 240 N/mm². Lisäksi liitoksen tulee täyttää edellä annettut rakenteelliset ohjeet.

\[
F \leq \begin{cases}
2,4 (k_1 t_1 + k_2 t_2) d & \text{(vain 1-leikkeissä)} \ (a) \\
4,6 k_2 t_2 d & \text{(vain 2-leikkeissä)} \ (b) \\
9 k_t d & \text{(8,13)} \ (c) \\
1,4 k_t d + 8,2 d^2 & \sqrt{f_y/240} & \text{(d)} \\
16 d^2 \sqrt{0,5 (k_1 + k_2) \sqrt{f_y/240}} & \text{(e)}
\end{cases}
\]

joissa

- \(t_1\) on ohuemman puun paksuus (mm)
- \(t_2\) on paksun puun paksuus (mm)
- \(d\) on pultin halkaisija (mm)
- \(f_y\) on pultin materiaalin myötöraja (N/mm²)
- \(k_1\) on taulukosta 8.11 puule 1 saatava kerroin.
- \(k_2\) on taulukosta 8.11 puule 2 saatava kerroin.

Taulukko 8.11

Kaaovojen (8,13) ja (8,14) k-kertoimet.

Ankurointitupun L valitava kuvan 5,6 mukaan

<table>
<thead>
<tr>
<th>Voiman ja puun syyn suunnan välineen kiluna</th>
<th>Halkaisija d (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>0°</td>
<td>1</td>
</tr>
<tr>
<td>30°</td>
<td>1</td>
</tr>
<tr>
<td>45°</td>
<td>1</td>
</tr>
<tr>
<td>60°</td>
<td>1</td>
</tr>
<tr>
<td>90°</td>
<td>1</td>
</tr>
</tbody>
</table>

k:n alaindeksi 1 viittaa 2-leikkeissä liitoksessa ulkopuuhun ja alaindeksi 2 keskipuuhun. 1-leikkeissä liitoksissa indeksit valitaan siten, että \(k_1 t_1 \leq k_2 t_2\).

Mikäli sivukappale on terävä, voidaan kaavoissa valita \(t_1 = t_2 = puuosan paksuus. Jos keskipakkalle on terävä, ei kaavaa (b) tarvitse tarkistaa ja kaavojen (d) ja (e) arvot kerrotaan 1,4:lla.

Puuruuvij- ja kuusiokanteruuvelistosten sallittu leikkausvoima lasketaan kaavasta (8,14). Kaava pätee
Kuva 8.7
Ruuven ja pulttien pienimmät sallittut etäisyydet (yksikköön ruuvin ja pultin halkaisijaa d). Kahdessa kuvassa oleva mita a määrittyy seuraavasti:

jos $\alpha \leq 30^\circ$, niin $a = 7$
jos $30^\circ < \alpha \leq 50^\circ$, niin $a = 6$
jos $50^\circ < \alpha \leq 70^\circ$, niin $a = 5$
jos $\alpha > 70^\circ$, niin $a = 4$.

samoilla edellytyksillä kuin pulttiliitosten vastaava kaava (8.13).

$$ F \leq \frac{9 \, k \cdot t \cdot d}{16 \, d^2 \sqrt{0.5 \, (k_1 + k_2) \cdot f_y/280}} \quad (8.14) $$

jossa

- t on kannan puoleisen puun paksuus (mm)
- d on ruuvin sileän osan halkaisija (mm)
- f_y on ruuvin materiaalin myötöraja (N/mm²)
- k_1 ja k_2 ovat taulukosta 8.11 saatavia kertoimia
Metallilevyn ja puun vällisen liitoksen sallittu leikkausvoima voidaan laskea kaavasta

\[F \leq 16.3 \cdot 10^5 \left(0.5 \left(1 + k \right) \sqrt{f / 240} \right) \quad (8.15) \]

Jos levyn paksuus on \(\leq 2 \) mm ja pultin tai ruuvin suurin halkaisija \(\geq 12 \) mm, tarkistetaan lisäksi levyn reunapuristus.

Mikäli ankkurointipituus on \(< 8 \) d, vähennetään kava-voista (8.14 ja 8.15) määritettyjä lujuksia ankkurointipituuksiens suhteen. Ankkurointipituuden tulee kuitenkin olla \(\geq 4 \) d

Puuruuvin ja kuusiokantaruuvin sallittu tartuntavoima (yksikkö N) lasketaan kaavalla

\[F = (7 + 3.6 \text{ d}) \cdot (L - 1.5 \text{ d}) \quad (8.16) \]

jossa

\[d \quad \text{ruuvin halkaisija (mm)} \]

\[L \quad \text{ruuvin kierteisen osan pituus (mm)} \]

Tällöin ankkurointipituus saa olla pienempi kuin 8 d.

8.4.2 Liitosten muodonmuutokset

Leikkausvoiman rasittaman liitoksen muodonmuutosta voidaan laskea kaavasta

\[\delta = \frac{q}{k} \quad (8.17) \]

jossa

\[q \quad \text{liitoksen liintä rasittava leikkausvoima} \]

\[k \quad \text{on siirtymäkerroin, joka saadaan sileille lanka-}

nauloille, puuruuville ja pulteille taulukosta 8.12.}.

Taulukko 8.12

| Aika- |
| | | |
| Lokka | Naula- | Puuruvi-
A	liitos	litiitos
B	100 d	60 d
C	300 d	160 d
	440 d	240 d

* Pulttioliitoksen siirtymäarvoon lisätään 0.05 d, joka ottaa huomioon ruuvin mahdollisen väljyden.

Kosteusluokkassa 3 kerrotaan taulukon 8.12 arvot 0,6:lla ja kosteusluokkassa 4 kertoimella 0,4.

9

PALOTEKNINEN MITOITUS

9.1 Yleishohjeet

Rakenteen tai rakennusosan palonkestävyyttä arvostellaan palonkestoaajalla, joka voidaan määrittää suoritetun polttotokkeen, näiden ohjeiden tai muiden riittävien selvitysten perusteella.

9.2 Paloteknisen mitoituksen perusteet

9.2.1 Hyötykuormat ja luonnokuormat

Hyötykuormina käytetään rakenteiden suunnittelua varten määritettyjä ominaiskuormia. Oleskelu- ja kokoontumiskuormana saa kuitenkin käyttää arvoa 0,75 kN/m², tungoskuormana arvoa 2,0 kN/m² sekä lumikuorman arvona 50 % ja tuulikuorman arvona 30 % ominaiskuormasta. Lisäksi saa tehdä Suomen rakentamismääräyskokoelman osan B1 mukaiset kuormien vähennykset pystyrakenteissa oleskelu- ja kokoontumiskuormiin. Kuormitusyhdestelmän selittäessä noudatetaan yleisesti sovellettuja periaatteita kul- loinkin vaarallisimman kuormitusyhdestelmän suhteen. Mitoituksessa voidaan otaksua, että lumi- ja tuulikuorma eivät esiinny samanaikaisesti.

9.2.2 Varmuuskertoimet

Kuorman ja materiaalin osavarmuuskertoimena paloteknisessä mitoituksessa käytetään arvoa 1,0.

9.2.3 Palosuhteet

Palotilan aika-lämpötilariippuvuus lasketaan ns. standardipalossa kaavasta

\[T - T_0 = 345 \text{ lg} \left(8t + 1 \right) \quad (9.1) \]

jossa

\[T \quad \text{on palotilan lämpötila (°C) ajanhetkellä t (min)} \]

\[T_0 \quad \text{on lämpötila (°C) ajanhetkellä t=0.} \]
9.2.4 Hiljityminen

Hiljymisnopeutena β käytetään standardipalokäyrän mukaisessa palossa seuraavia arvoja:

- $\beta = 0,7 \text{ mm/min}$ kerrosliimatulle puulle
- $\beta = 0,8 \text{ mm/min}$ rakennepuutavaraalle

Puisen rakennososan suorakaitseennuotoisen poikkileikkaoksen hiljymissyyvyydessä x voidaan laskea hiljymisnopeuden β ja ajat $t \text{ (min)}$ avulla seuraavasti:

$$x = \beta \cdot t.$$

Hiljymäntä jääneen poikkileikkaoksen nurkkien kaarevuussäde $r = 0,8 \beta \; t \text{ (mm)}$.

Jos puurakenteella on yhteinen kosketuspinta jonkun toisen rakennososan, kuten yläpohjan, seinän ym. kannsa, voidaan jälkimmäisen rakennososan suojaava vaikutus kosketuspinnan hiljymisessä ottaa huomioon, jos suojaavan rakenteen vaikutus hiljymissyyvyyteen on luotettavin selvityksen osoittettu.

9.3 Mitoitus

Rakennososan murtorajatilaa vastaava kantokyky määritetään kyseisen palonkestoajan jälkeen hiljymättä jääneelle poikkileikkauselle.

Paloteknisessä mitoitukseessa käytetään taulukossa 9.1 esitettyjä lujusarvoja.