SISÄASIAINMINISTERIÖ
Suomen rakentamismääräyskokoelma

KEVYTSORAHARKKORAKENTEET

Ohjeet 1981
KEVYTSORAHARKKORAKENTEET
Ohjeet 1981

Helsingissä 22 päivänä toukokuuta 1981
Osastopäällikkö Ylipitoja Olavi Syrjänen
Yli-insinööri Esko Mononen

SISÄLLYSLUETELO
1 Yleisohjeet
 1.1 Soveltamisala
 1.2 Määritelmät
 1.3 Merkintöjä
2 Rakenteiden suunnittelu
 2.1 Yleistä
 2.2 Suunnitelmat
 2.3 Kuormat
 2.3.1 Laskentakuormien määrättäminen
 2.3.2 Kuormien jakautuminen rakenteissa
 2.3.3 Voimassuureiden laskeminen
 2.4 Materiaaliomaisuuksut
 2.4.1 Lujuus- ja muodonmuutosomaisuuksut
 2.4.2 Kutistuminen
 2.4.3 Lämpöpitineminen
 2.5 Rakenneosien kapasiteetit
 2.5.1 Puristuskapasiteetti
 2.5.2 Taivutuskapasiteetti
 2.5.3 Leikkauskapasiteetti
 2.5.4 Yhdistetty puristus ja taivutus
 2.5.5 Yhdistetty taivutus ja leikkaus
 2.5.6 Raudoltuksen ankkurointikapasiteetti
 2.5.7 Paikkallinen puristuskapasiteetti
 2.6 Rakenneosien muodonmuutokset
 2.7 Rakenteiden mitat
 2.7.1 Poikkeilvakauta ja jännemitat
 2.7.2 Rakenteiden vähimmäismetat
3 Rakenteiden valmistus
 3.1 Materiaalit
 3.1.1 Yleistä
 3.1.2 Kevytsoraharkot
 3.1.3 Laastit
3.1.4 Raudoitustangot
3.1.5 Muut tarvikkeet
3.2 Työsuoritus
3.2.1 Yleistä
3.2.2 Muurauustyön johtaminen
3.2.3 Rakennustarvikkeiden säilytys työmaalla
3.2.4 Muuraus
3.2.5 Talvimuuraus
4 Laadunvalvonta
 4.1 Yleistä
 4.2 Materiaalien ja rakennustarvikkeiden laadunvalvonta
5 Rakenteiden valmistuksen laadunvalvonta
5 Kelpoisuuuden toteaminen

1 Yleisohjeet

1.1 Soveltamisala
Nämä ohjeet koskevat nimellistihedyeltään enintään 1000 kg/m³ kevytsoraharkoista muurattujen seinä-, pilari- ja laattarakenteiden lujutta ja säilyvyyttä.

1.2 Määritelmä
Harkkomuuri
harkkomuuriilla tarkoitetaan näissä ohjeissa kevytsoraharkojen ja laastin muodostamaa osaa harkkorakenteesta.

Kevytsora
savesta poiktaen paisuttamalla valmistettu rakeinen aine.

Kevytsorabetoni
rakennussementistä, vedestä ja kevytsorasta valmistettu betoni, jossa voi olla myös hienorakesta runkoainetta ja lisääaineita.
Harvan kevytsorabetonin runkoainerakeiden välit ovat vain osittain sementtiliiman täyttämä.
Kevytsoharharkko
yleensä harvasta kevytsoharbonista valmistettu rakennuskappale, josta tässä ohjeessa käytetään myös nimitystä harkko. Harkkoissa voi olla uria tai reikiä tai molempia.

Valmistusera
samaa raaka-ainetta käyttäen vakiomenetelmällä valmistettu samaa nimellismitatt oleva tuote-erä.

Tarkastusera
yhdeksi paikassa sijaitseva tarkastettava materiaali-erä, joka ulkonäkemestä on samaa laatua, tuotetta ja nimellismitattaa.

Näyte
tarkastuseraa otetut yhden tai useamman näyte-
kappaleen muodostama otos.

Näyttekappale
tarkastuseraa otetut tai valmistettu kappale, josta
valmistetaan tehtävään kokeeseen sopiva näytte-
kappale.

Koeappale
näyttekappaleesta tiettyä koetta varten erotettu pa-
l, joka on työrettä asiakomaiseen kokeeseen so-
pivaan muootoon. Näyttekappale voi sellaisenaan
soveltua näyttekappaleeksi.

1.3 Merkintöjä

A_c harkkomuuriin poikkleikkusala, josta on
vähennetty reikiä pinta-ala
A_{co} kuormitettun pinnan ala paikallissa puris-
tuksessa
A_{c1} kuorman jakaantumispinnan ala paikalli-
sessa puristuksesssa
A_s raudoituksen poikkleikkuspinta-ala
E_c kevysorsorharkkorakenteen kimmomoduuli
lyhytaikaiskuormituksessa
E_{cc} kevysorsorharkkorakenteen kimmomoduuli
pitkäaikaiskuormituksessa
E_s raudoituksen kimmomoduuli
F_{du} raudoitustangon ankurointikapasiteetti
H täyttökorkeus
K_n kevysorsorharkkon nimellislujuus
L jännemitava, vapaa korkeus
L_e nurjahduspituus
M taivutusmomentti
M_o taivutusmomentti
L_o taivutusmomentti
N normalivoima
N_d normalivoiman laskenta-arvo
N_e normalivoimakapasiteetti
V liikkausvoima
V_d liikkausvoiman laskenta-arvo
V_e liikkaukskapasiteetti
W kevysorsorharkkorakenteen poikkleikkauk-
ksen taivutusvastus
b poikkleikkauksen leveys
d poikkleikkauksen tehollinen korkeus
c raudoitusta suojavvan betonipeiteen pak-
kuus, koheesiomaan koheesiio
a_o normalivoiman epäkeskisyys
a_d normalivoiman epäkeskisyyn laskenta-
aro
f_b raudoitustangon ankurointilujuus
f_{ck} harkkomuurin ominaispuristuslujuus
f_{cd} harkkomuurin puristuslujuuden laskenta-
aro
f_{ctk} harkkomuurin ominaisvelolujuus
f_{cd} harkkomuurin velolujuuden laskenta-arvo
f_{yt} raudoitustangon ominaislujuus
f_{yd} raudoitustangon laskentalujuus
h poikkleikkauksen korkeus
k_s nurjahuiskerroin
l_b raudoitustangon ankurointipituus
p maanpaine
q pintakuorma
u_s raudoitustangon ympärysmitta
w_k hakeaman ominaisleveys
x poikkleikkauksen neutraaliakselin etäisyys
puristetuista renasta
z poikkleikkauksen sisäinen momenttivarsi
a kulma
a_{cr} harkkomuuriin pituuden lämpötilakerroin
Y kevysorsorharkkorakenteen materiaaliosta-
varmuuskerroin
a_c harkkomuuriin suhteellinen muodonmuutos
a_{cst} harkkomuuriin suhteellinen loppukuutiutuma
a_{cu} harkkomuuriin suhteellinen murtopuristu-
ma
a_{cm} harkkomuuriin suhteellinen murtovennymä
a_s raudoitustangon suhteellinen muodon-
muutos
a_u raudoitustangon suhteellinen murtovennym-
ma
a_q raudoitustangon haikaisija
λ hoikkuusaste
σ_o harkkomuurin jännitys
σ_u raudoitustangon jännitys

2 Rakenteiden suunnittelut

2.1 Yleistä
Kevysorsorharkkorakenteet suunnitellaan rakenta-
mismääryyskoeloman osan B 1 "Rakenteiden var-
muus ja kuormitukset" mukaisia yleisiä suunnitte-
luperiaatteita ja rajatilamitoituksen periaatteita
noudattien.
Kevysorsorharkkorakenteet suunnitellaan yleensä
vaakaraudoitettua. Pystyraudoituksen käyttöä tulisi vältää.

Rakenteita suunniteltaessa huolehditaan siitä, että niihin käytön aikana kerääntyvä kosteus pääsee poistumaan.

Tarvittaessa rakenteen pinnat suojetaan vahingollisten aineiden vaikutusta vastaan.

2.2 Suunnitelmat
Suunnitelmat esitettävät piirustuksina, joita tarvittaessa täydennetään muilla asiakirjoilla.

Suunnitelmassa mainitaan selvästi käytettävät
- harkot
- laastit
- raudoitustangot ja
- muut tarvikkeet

Asianomaisia materiaaleja koskevien standardien ja tämän ohjeen mukaisia merkintöjä noudatetaan.

Tavanomaisten rakenteita koskevien tietojen, kuten rakennepaksuuksien, rakenteiden sijainnin ja hyötykurmioiden lisäksi suunnitelmissa esitettään
- raudoitukset, niiden suojaus ja ankkuointi
- metallisteiden laatut, muoto, määrä, sijoitus, suojaus ja ankkuointi
- urat, rollot ja syvennykset sekä reiät tarvittaessa
- limitys tarvittaessa
- saumatyyppi ja -paksus tarvittaessa
- työaikot ja -saumat tarvittaessa
- liikuntasuomut, sijainti ja rakenne tarvittaessa
- erikoisoloosuhteita, kuten talvimuurastusta koskevat lisäohjeet tarvittaessa.

2.3 Kuomat

2.3.1 Laskentakuormien määrittäminen

Rakenteiden laskentakuormat määritetään rakentamismääräyskokoelman osan B 1 "Rakenteiden varmuus ja kuormitukset" mukaan.

Tavanomaisella maaperällä saadaan maanpainekuormien laskenta-arvot laskeutuvaan kuvan 2.1 mukaiseksi. Kuvan merkinnät ovat:
- \(p_1 \) on maan painosta aiheutuvan maanpaineen laskenta-arvo (kN/m²)
- \(p_2 \) on pintakuormasta ja koheesiomaassa lisäksi koheesiosta aiheutuvan maanpaineen laskenta-arvo (kN/m²)
- \(H \) on täytkökorkeus (m)
- \(q \) on pintakuorma (kN/m²)
- \(c \) on koheesiomaan koheesio (kN/m²)

Mahdollisen täytkömaan tiivistämisen aiheuttama lisäys maanpaineeneseen otetaan tarvittaessa huomioon.

2.3.2 Kuormien jakautuminen rakenteissa

Pystykuorman voidaan olettaa jakautuvan ja siirtyvän seinissä ja pilareissa kuvan 2.2 mukaisesti. Vaakarakenteiden tuilla sekä pilarien ja seinien alapäässä voidaan kuormien otaksa jakautuvan tasaisesti koko tukipinnalle.

Kuva 2.1
Maanpainekuormien laskenta-arvot ja jakautumakuviot

vaakaraudoitettu seinä

\[q \]

\[H \]

vaakaraudoitettu seinä

\[q \]

\[H \]

MURTOTILA
kitkamaa 3,3H 0,5q
koheesiomaa 9H 1,6q – 1,3c

MURTOTILA
kitkamaa 6,5H 0,5q
koheesiomaa 18H 1,6q – 1,3c

KAYTTOTILA
kitkamaa 2,7H 0,3q
koheesiomaa 9H q – 2c

KAYTTOTILA
kitkamaa 5,4H 0,3q
koheesiomaa 18H q – 2c
2.3.3 Voimaasuureiden laskeminen
Taivutusmomenttien ja leikkausvoimien jakaumien rakenteissa lasketaan kimmoteorian tai luotet-
tavien selvitysten perusteella muiden teorioiden mukaan. Tarvittaessa otetaan halkelun vaikutus
huomioon.
Jatkuvissa rakenteissa voidaan poiketa kimmoteoria
mukaisesta momenttien jakaumisesta siten, että momentteja muunnetaan korkeintaan 20 % ja
muut voimaasureet korjataan tasapainoehojen
mukaisiksi.

2.4 Materiaaliominaisuudet
2.4.1 Lujus- ja muodonmuutosominaisuudet
Harkkomuurin ja raudoituksen laskentalujus saa
aan jakamalla materiaalikohtainen ominaislujuus
(taulukko 2.1) taulukon 2.2 mukaisella materiaali-
ja rasituskohtaisella osavarmuuskertoimella.

\[f_a = f_k / \gamma \]
(2.1)

Taulukko 2.1
Harkkomuurin ja raudoituksen ominaislujuudet

<table>
<thead>
<tr>
<th>Materiaali ja rasitus</th>
<th>Ominaislujuus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harkkomuurin</td>
<td>f_k = 0,7 K_n (^1)</td>
</tr>
<tr>
<td>− puristus</td>
<td>f_{ak} = 0,1 K_n (^1)</td>
</tr>
<tr>
<td>− veto</td>
<td></td>
</tr>
<tr>
<td>Raudoitus</td>
<td>f_{yk} (^2)</td>
</tr>
<tr>
<td>− puristus ja veto</td>
<td></td>
</tr>
</tbody>
</table>

1) K_n on harkkokohtaisen SFS-standardin mukai-
nen nimellislujuus
2) Raudoituksen alempi myötöraja- tai 0,2-rajaa-
timus

Harkkomuurissa otaksutaan jännityksen ja muo-
donmuutoksen välisen yhteyden kuvan 2.3 ja raudo-
ituksessa kuvan 2.4 mukaisiksi.

Kuva 2.3
Harkkomuurin jännitys-muodonmuutoskuvio

Kuva 2.4
Raudoituksen jännitys-muodonmuutoskuvio

Kuva 2.5
Nurjahduskerroin k_s
Harkkomuurin kimmomoduuli lasketaan kaavasta:
\[E_c = \frac{E_s}{3} \] \hspace{1cm} (2.2)
missä \(E_s \) on harkko-kohtaisen SFS-standardin muikanen harkon nimellispuurislujuus

Pitkääikaisten kuormituksen aiheuttamia muodon-
muutoksia laskettaessa kimmomoduuli on:
\[E_{cc} = \frac{E_s}{3} \] \hspace{1cm} (2.3)

Raudoituksen kimmomoduulille käytetään arvoa:
\[E_s = 200 \ 000 \ N/mm^2 \]

Harkkomuurin murtopuristuma on puristusrasite-
tuissa rakenteissa:
\[\epsilon_{ru} = \frac{f_{ut}}{E_s} \] \hspace{1cm} (2.4)

Taivutusrasitetuissa harkkomuuruseissa murtopuris-
tuma on:
\[\epsilon_{ru} = 2 \cdot \frac{f_{ut}}{E_s} \] \hspace{1cm} (2.5)

2.4.2 Kutistuminen
Tämän ohjeen mukaisesti valmistetun harkkomuu-
rin kutistumalle käytetään arvoa \(\epsilon_{rv} = 0,7 \% \) \(E_{cc} \), kun muurin absoluuttinen kosteus muuttuu välillä 15...4 \% laskettuna muurin kuvatihyeystä.

2.4.3 Lämpöpitimeninen
Harkkomuurin pituuden lämpötilakertoimelle käy-
tetään arvoa:
\[\alpha = 6 \cdot 10^{-6} \cdot 1^\circ C \]

2.5 Rakennonisien kapasiteetti
2.5.1 Puristuskapasiteetti
Muurattun kevytsoraharkkoseinän ja -pilarin puris-
tuskapasiteetti lasketaan kaavasta:
\[N_s = k_s \cdot A_c \cdot f_{ut} \] \hspace{1cm} (2.6)
missä \(k_s \) on nurjahduskerroin, jonka arvo saa-
daan kuvasta 2.5.
\(A_c \) on harkkomuurin poikkileikkauksala, josta on vähennetty reikien pinta-ala

Kuvassa 2.5 \(L_c \) on seinän vapaa korkeus; \(e_d \) on epä-
keskisyden laskenta-arvo, joka lasketaan kaavasta:
\[e_d = 0,05 \ h + e_o \] \hspace{1cm} (2.7)

missä \(e_o \) on normaalivoiman alkuperäinen epäkes-
kesisyys

2.5.2 Taivutuskapasiteetti
Raudoittamattoman rakenteen taivutuskapasiteet-
tia saadaan käyttää hyväksi yleensä vain mitoitet-
taessa rakennetta tuulikuormille. Taivutuskapasi-
teetti lasketaan kaavasta:
\[M_s = f_{ut}W \] \hspace{1cm} (2.8)
missä \(W \) on poikkileikkauksen taivutusvastus

Raudoitetussa poikkileikkauksessa jännitysten ja muodonmuutosten jakaantuminen otaksutaan ku-
van 2.6 mukaiseksi. Harkkomateriaalin puristusjän-
nitysten jakaantumiskuvion saa korvata suoraka-
teella, jossa jännitys on 75 \% laskentalujuudesta ja
jonka korkeus on puristetun reunan ja neutraali-
selin välillä 0,75

Kuva 2.6
Muodonmuutosten ja jännitysten jakaumaton poik-
kleikkauksessa murtotilassa

2.5.3 Leikkauskapasiteetti
Raudoittamattoman harkkomuurin leikkauskapa-
siteettia saadaan käyttää hyväksi yleensä vain mitoi-
taessa rakenne tuulikuormalle. Leikkauskapasi-
teetti lasketaan kaavasta:
\[V_o = 0,5 b d f_{ut} \] \hspace{1cm} (2.9)

Raudoitetun rakenteen leikkauskapasiteetti lasketaan kaavasta:
\[V_o = \frac{M_o}{z} \] \hspace{1cm} (2.10)

missä \(z \) on poikkileikkauksen sisäinen momentti-
varsi.

Raudoitusangolla tulee tällöin olla kyseisessä poikkileikkauksessa vetovoimaan \(V_o \) nähden riittä-
vä ankkuoinkapasiteetti.

2.5.4 Yhdistetty puristus ja taivutus
Samanaikaisesti taivutetuissa ja puristetuissa raken-
teessa tulee olla voimassa seuraava ehto:
\[\frac{M_s}{M_o} + \frac{N_s}{N_o} \leq 1 \] \hspace{1cm} (2.11)

missä \(M_o \) on poikkileikkauksessa vaikuttavan si-
vuttaiskuorman aiheuttaman taivutus-
momentin laskenta-arvo
\(N_o \) on normaalivoiman laskenta-arvo
\(M_s \) on poikkileikkauksen taivutuskapasiteetti
\(N_s \) on rakenteen normaalivoimakapasi-
teetti, jota määritteleeäa taivutuksen
rakenteeseen aiheuttama lisäepäkeski-
syys otetaan huomioon
2.5.5 Yhdistetty taivutus ja leikkaus

Samanaikaisesti taivutetuussa ja leikkausrasitetuussa rakenteessa tulee olla voimassa ehto

\[\frac{M_d + V_d z}{M_d} \leq 1 \]

(2.12)

missä \(M_d \) on taivutusmomentin laskenta-arvo. Jatkuvalta ja kiinnitetyllä tuella \(M_d \) valitaan nollaksi. \(V_d \) on leikkausvoiman laskenta-arvo

2.5.6 Raudoitukseen ankkurointikapasiteetti

Suoran raudoitustangon ankkurointikapasiteetti poikittaisen puristuksen esiintyessä lasketaan kaavasta

\[F_{sb} = f_b u_b l_b \]

(2.13)

missä \(f_b \) on ankkurointilujuus, jonka arvo betonieräksestä A 400 H ja A 400 HW valmistetuille raudoitustangoille \(f_b = 1,0 \) N/mm². \(u_b \) on raudoitustangon ympärysmitta \(l_b \) on raudoitustangon ankkurointipituus

Kuva 2.7

Tangon ankkurointi suorakulmakoukkua käyttäen

Ankkuroinnin alkamiskohdan ja koukun taivutuksen alkamiskohdan välisen suoran tangan osan pituuden tulee olla vähintään r. Teräsluaurilla A 400 H ja A 400 HW on \(r = 10\phi \).

Suoran tangan jatkokseessa ankkurointikapasiteetti lasketaan jakamalla kaavasta 2.13 saatava kapasiteetti luvulla 1,5.

2.5.7 Paikallinen puristuskapasiteetti

Kun puristava voima kuormittaa vain osaa rakenteen pinnasta, saadaan rakenteen pinnassa puristuslujuuden laskenta-arvona käyttää korotettua arvoa edellyttäen, että puristusraasitukseen voi ottaa jakautuvan suuremmalle pinnalle ja rakenne kestää syntyvät halkaisuvioimat.

Paikallinen puristuskapasiteetti lasketaan kaavasta

\[N_v = A_{so} f_{cd} \sqrt{A_{cd}/A_{so}} \leq 2 A_{so} f_{cd} \]

(2.14)

missä \(A_{so} \) on kuormitetun pinnan ala \(A_{cd} \) on kuorman jakautumispinnan ala

2.6 Rakenneosien muodonmuutokset

Rakenteen käyttötila vastaava taipuma ei saa ylittää arvoa L/200, ellei rakenteen muodonmuutokselle aseteta erityisasvaimuksia.

2.7 Rakenteiden mitat

2.7.1 Poikkileikkausravot ja jännemitat

Harkkomuurin poikkileikkauskien ja raudoituksen mittoina käytetään nimellismittoja. Kaikki poikki­
leikkausten heikonkyset, kuten reikäharkkojen reilut, otetaan laskelmissa huomioon.

Ellei ole erityistä syytä menetellä toisin, otaksutaan laatta- ja palkkimaisissa rakenteissa jännimitaksi tutkin kesköidän väli ja seinien ja pilarin korkeudeksi niiden vapaa korkeus. Ensiksi mainittessa tapauksessa ei jännimitaksi kuitenkaan tarvitse otaksua suurempaa arvoa kuin tukien vapaa väli lisättyynä 5 %:lla.

2.7.2 Rakenteellisia vähimmäismittoja

Normaaliveinan kuormittaman seinän vähimmäispaksuus on 100 mm ja pilarin 200 mm.

Raudoitustangon peittävän laastikerroksen vähimmäispaksuus on 15 mm.

Raudoitustangon pinnan etäisyyden rakenteen ulkopinnasta tulee olla vähintään 30 mm.

3 Rakenteiden valmistus

3.1 Materiaalit

3.1.1 Yleistä

Kevytsoraharkkorakenteen rakennustarvikkeita ovat kevytsoraharokat, lasitit, raudoitustangot ja muut tarvikkeet.

3.1.2 Kevytsoraharokat

Kevytsoraharkkorakenteisiin saadaan käyttää voimassaolevien SFS-standardien mukaisia kevytsoraharmia. Muita harkkoja voidaan käyttää, jos on hankittu ennakolta Valtion teknillisen tutkimuskeskuksen lausunto niiden soveltuvuudesta kevytsoraharkkorakenteisiin.

3.1.3 Lasitit

3.1.3.1 Yleistä

Kevytsoraharkkorakenteiden muurauksessa saadaan ilman lujuusseityyksiä käyttää muuraussementilasiteteja, joiden osa-alinesuhteet on esitettävä taulukossa 3.1. Muita laasteja käytettäessä tulee Valtion ·akilinalin tuntikausi keskuksen lausunnon mukaan, että ne täyttävät tässä ohjeessa laasteille asetetut vaatimukset.
Taulukko 3.1
Laastin koostumus

<table>
<thead>
<tr>
<th>Painosuhde</th>
<th>muuraussementti</th>
<th>rakennussementti</th>
<th>hiekka</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>15</td>
<td></td>
<td>500</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>500</td>
</tr>
</tbody>
</table>

3.1.3.2 Tuoreen laastin ominaisuudet
Tuoreen laastin tulee olla ominaisuuksiltaan sellaista, että laastin kovettuttua tämän ohjeen mukaisesti muuratuussa rakenteessa täyttää sillä kohdassa 3.1.3.3 asetetut vaatimukset.
Tuoreen laastin tulee olla notkeudeltana ja työskentävyydeltään sopiva, eikä laastista saa erottua lii­kkää vetää tai laastin jäykistyä haitallisessa määrin ennen käyttöä.
Laastissa ei yleensä saa olla ilmaa yli 20 % lasketun laastin tilavuuudesta.

3.1.3.3 Kovettuneen laastin ominaisuudet
Laastin tehtävänä on sitoa harkot yhtenäiseksi rakenteeksi. Laastin puristuslujuuden tulee olla vähintään harkon puristuslujuus ja laastin vetolujuuden sekä laastin ja harkon välisen tarttunnan vähintään harkon vetolujuus.
Laastin tulee raudoitetuissa rakenteissa antaa riittävä korroosion suoja raudoituksele. Raudoituksesta ja laastin välisten tartunnan tulee olla riittävä rau­doituksesta harkon ja laastin yhteis­toiminnan kannalta.
Laastin kuistuminen tai pauminen ei saa olla niin suuri, että se aiheuttaa haittaa rakenteen toiminnalle.
Laastin on pakkasenkestävyydeltään vastattava harkolle asetettavia pakkasenkestävyysvaatimuksia kohteessa, missä harkkomuuri joutuu pakkasen vaikutuksille alttiiksi.

3.1.3.4 Laastin osa-aineet
Sideaineen tulee kovettuvuutensa sitoa runkoaine kiinteäksi kapalleeksi sekä liittää laastin ja harkot yhteen. Laastin sideaineena käytettävä muuraussementti valmistetaan hienoksi jauhetusta portlandsementtiklinkkeristä, kalkkikivestä ja kipsistä sekä lisäaineista.

Runkoaine ei saa sisältää laastin kovettumiseen tai ulkonäköön haitallisesti vaikuttavia epäpuhtauksia. Laastin runkoaineena käytettävän hiekan suositel­tavat rakesiuuskäyrän raja-arvot on esitetty kuval­sa 3.1.
Laastin valmistuksessa käytettävä vesi ei saa sisäl­tää laastin kovettumiseen tai ulkonäköön haitalli­sesti vaikuttavia epäpuhtauksia.
Lisa­aineen on koostumukseeltaan oltava sellainen, että siltä olisi vaihingollisia vaikutuksia laastin, rau­doitukseen eikä muihin rakennussaineisiin. Lisa­aineen soveltuvuus käytettäväksi harkkorakenteen muurauksessa tulee selvittää ennakko­kokoon.
Laastissa voidaan käyttää värinaista hienojako­isia, kiinteitä epäorgaanisia värinaiteita, jotka toimivat laastissa hienon runkoaineen tavoin ja ovat va­loa ja emäksiä kestäviä. Suurin sallittu värina­inen määrä on 6 % sideaineen kokonaispainosta.

3.1.3.5 Laastin valmistus
Laastin osa­aineet tulee mitata ja sekoittaa siten, että täytetään rakenteen toiminnan edellyttämät vaatimukset sekä saavutetaan tätä ravintotä ja harkon valituksia, tasalaatuisuus ja työ­skentävyys.
Laastin ominaisuudet eivät saa olla niin ennen käyttöä muuttua niin paljon, että muuraaminen vaikeutuu tai ettei lopputulos täytä asetettuja vaatimuksia.
Laastin valmistuksessa, muuraustyön suunnittelus­sa ja laadunvalvonnassa tulee ottaa huomioon laastin toimintatapa.
Suositeltavan tapa mitata laastin osa­aineet on punnitseminen. Tarkkaa tilavuusmittauksta käytet­täessä määrätään kunkin osa­aineen tiheys ja saatuja arvoja käytetään suhteitukseessa.
Taivaliosuhteissa laastin lämpötila nostetaan vetä työhuoneen lähimmät kohdat.

3.1.3.6 Laastin lujuudenkehitys
Muurauksentilaatin puristuslujuuden kehitymistä voidaan arvioida kuvan 3.2 perusteella.

Kuva 3.1
Hiekan rakesiuuskäyrän raja-arvot

Kuva 3.2
Laastin lujuudenkehitys
3.1.4 Raudoitustangot
Kevytsorahkorkoranteisiin kohdistuvia vetorasia-
tuksia vastaanottamaan saadaan käyttää SFS-sa-
dardrien mukaisista betoniterästangoista A 400 H ja
A 400 HW valmistettuja raudoitteita.
Muiden teräs laatujen käytöstä on ennakolta hankit-
tava Valtion teknillisen tutkimuskeskuksen lausun-
to niiden soveltuvuudesta kevytsorahkorkoran-
teisiin.

3.1.5 Muut tarvikkeet
Kevytsorahkorkoranteissa käytettäviin muihin tarvikkeisiin luetaan mm. lämmöneristeen läpi me-
nevät siteet. Siteet tulee tehdä korrosionkestävis-
tä materiaaleista.

3.2 Työn suoritus
3.2.1 Yleistä
Kevytsorahkorkoranneen tehdään piirustusten ja
muiden rakennusasiakirjojen mukaiseksi hyväksi
tunnettuja työtapoja noudattaen.

3.2.2 Muuraustyön johtaminen
Kevytsorahkorkoranteiden muuraustyön johtaja-
lal tulee olla tehtävään riittävä taito ja kokemus.

3.2.3 Rakennustarvikkeiden säilytys työmaalla
Rakennustarvikkeet ja lasisten osa-aineet säilyte-
tään suojattuna kaikenlaisilla vahingollisilla vaiku-
tuksilla. Lisäksi huolehditaan siitä, etteivät eri laa-
dut sekoitu keskenään.

3.2.4 Muuraus
3.2.4.1 Limiyys
Päällekkäiset harkot limiteitään toisiinsa nähdä väh-
tään yleisinä säätöopinnoina.

a) täysi sauma

b) rakosauma

c) sauman sisäänveto

Kuva 3.3
Täysi sauma ja rakosauma

hintään 1/4-harkon pituuden matkan, ellei piir-
ruksissa toisin mainita.

3.2.4.2 Saumat
Kevytsorahkorkoranneen muurataan piirustusten
mukaisesti täysin saumoin (kuva 3.3 a), rakosa-
moilin (kuva 3.3 b) tai piirustusten mukaisin erikois-
saumoin. Rakosaumaa saa käyttää vain rakenteis-
ka, joiden paksuus on ≥ 200 mm. Sauma voi olla
harkon pinnasta sisään vedetty enintään kuvan
3.3 c mukaisesti ilman, että sen vaikutusta sauman
lujuuteen täyttyy ottaa huomioon.

Jos sauman sisäänveto on suurempi kuin kuvassa
3.3 c on esitetty, käytetään laskelmia rakenteen
paksuutena sauman kohdalla mitattua paksuutta.

Jos rakosaumassa raon leveys on > h/3, otetaan
raon vaikutus huomioon vähennyksenä poikkileik-
kaussuureita laskettaessa.

Vaaka- ja pystysuunnan nimellispaksuus on yleensä
10 mm.

3.2.4.3 Raudoitustankojen sijoittaminen rakentei-
siin
Rakenteessa toimivat raudoitustangot sijoitetaan
piirustuksin merkittyihin kohtiin harokossa oleviin
uriin tai raikkuil toinen, että kohdan 2.7.2 vaatimukset
läpäistään (kuva 3.4).

Kuva 3.4
Raudoitustankojen sijoittaminen rakenteeseen

3.2.4.4 Siteiden sijoittaminen rakenteisiin
Kevytsorahkorkoranteissa käytettävät siteet sijo-
tetaan piirustuksiin merkityllä tavalla.

3.2.4.5 Työn tarkkuus
Välipohjan kohdalla saa ylä- ja alapuolisen seinän
ja pilarin vaakasuora poikkeama suunnitelusta
keskilinjasta olla enintään h/20, missä h on rakene-
teen poikkeilkaakseen korkeus tarkasteltavassa
suunnassa.

Seinän ja pilarin ylä- ja alapään keskipisteiden yh-
dyslineja saa poiketa loitelinjasta enintään L/150,
missä L on rakenteen vapaa korkeus.

Puistusrasitettua seinän ja pilarin ylä- ja alapään
keskipisteiden yhdistymisesta mitattu käyrystys saa
ole

3.2.4.6 Muurauskseen yksityiskohtia
Uuria, roiloja ja syvennyksiä saa yleensä tehdä vain
piirustusten mukaan. Ne tehdään muurauskse
yhteydessä tai jyrimsällä.

Harkkorakenteet muurataan siten, että vältetään
muita kuin vaakasuoria tai porrostettuja työsaumo-
ja.

Työaukkoja ja -sauvoja voidaan tehdä, jos niiden
vaikutus rakenteen lujuuteen otetaan suunnitelmis-
sa huomioon.
3.2.4.7 Muuratun rakenteen suojaminen
Muuratettu rakennus suojataan työnaikaiselta vahingoilliselta rasituksilta ja muielta vaikutuksilta. Vahingoillinen rasisu voi olla esim. liian varhainen peruskuopan täyttö. Muita vaikutuksia ovat esim. vastamuuratun rakenteen kastuminen sateen, lumen, suunamisen sekä betonirakenteiden valun ja kastelun vaikutuksesta tai liian nopea epätasainen kuivuminen.

3.2.5 Talvimuurattu
3.2.5.1 Talviolosuhteet
Talviolosuhteiden katsotaan vallitsevan, kun ilman lämpötila ajoitakin laskee niin alas, että on olemassa laastin jäätymisvaara.

3.2.5.2 Yleiset edellytykset
Ulkoilman lämpötilan ollessa alle 0°C rakennus suojataan siten, että sen lämpötila laastin kovetumisen kannalta riittävän pitkän ajan pysyy 0°C:n yläpuolella.

Rakennustarvikkeiden säilytykseen ja varastointiin sekä muuratun rakenteen suojaamiseen tulee kiinnittää talviolosuhteissa erityistä huomiota.

3.2.5.3 Rakennustarvikkeet
Kevytsoraharkot eivät saa olla muurattaessa märkä, jääteytenä tai lumisia. Laastissa ei saa olla jääpaljoa eikä jääteytenä osaainelit. Kovetumista kiihdyttävät tai jäätymispiistettä alentavia lisäaineita laastissa saa käyttää vain tämän ohjeen kohdan 3.1.3.4 mukaisesti.

Raudoltusankojen tulee olla vapaat lumesta ja jäästä ja niiden lämpötilan muurattaessa yli 0°C.

3.2.5.4 Laastin jäätyminen
Laastin jäätyä vasta niin pitkän kovetumisen jälkeen, ettei jäätyminen enää murra laastia. Laustin puristuslujuuden kehittymistä voidaan arvioida kuvan 3.2 perusteella ja riittävän lujuutena voidaan pitää harkkomuurnin ominaislujuutta vastaavaa lujuutta.

3.2.5.5 Rakenteen kuormittaminen
Tukirakenteet ja mahdolliset muottiirakenteet saa purkaa ja rakennetta kuormittaa, kun muurattu rakennus on saavuttanut riittävän lujuuden. Talviolosuhteissa muuratussa rakenteessa on otettava huomioon hidasustain kovetuminen, eikä rakennetta saa kuormittaa laastin lujuutta suuremmalla kuormalla. Laastin puristuslujuuden kehittymistä voidaan arvioida kuvan 3.2 perusteella.

4 Laadunvalvonta
4.1 Yleistä
Kevytsoraharhkorakenteiden kelpoisuuden varmistamiseksi valvotaan rakenteiden ja niihin käytettävien rakennustarvikkeiden laatua.

4.2 Materiaalien ja rakennustarvikkeiden laadunvalvonta
Materiaalien ja rakennustarvikkeiden laadunvalvonta käsittelee kevytsoraharkojen, muurualuslaatien ja niiden osa-aineiden sekä raudoltusankojen ja muiden tarvikkeiden valmistajan ja käyttäjän suorittaman laadunvalvonnan.

Kevytsoraharkojen valmistaja valvoo harkojen laatua kevytsoraharkojka koskevien SFS-standar- dien tai Valtion teknillisen tutkimuskeskuksen kanssa tehdyn laadunvalvontasopimuksen mukaan.

Laastin valmistaja ja käyttäjä valvovat, että laasti tuoreena ja kovettuneena täyttää sille kohdissa 3.1.3.2 ja 3.1.3.3 asetetut vaatimukset. Laastin koostumuksen selvittämisessä tehdään tarvittaessa ennakkokokeita.

Betoniterästankeineen valmistajat valvovat niiden laatua asianomaisten SFS-standardien mukaan.

Muut metallisosat tarkastetaan silmämääräisesti ja otetaan talteen ainestodistukset tai vastaavat selvitykset.

4.3 Rakenteiden valmistuksen laadunvalvonta
Rakenteiden valmistuksessa laadunvalvonta käsit- tää työn valvonnan sekä mahdolliset ennakkoko- keet ja työnaikaiset kokeet.

Kevytsoraharkot tarkastetaan silmämääräisesti ja pakkauksekinäistä tallennetaan valmistusierä koskevat tiedot. Betoniterästango tarkastetaan sil- mämääräisesti.

Muuraustyöntoja valvoo, että muuraustyö tehdään riittävällä ammattitaivalalla kohdassa 3.2 annettujen ohjeiden ja suunnittelujen antamien ohjej- den mukaisesti.

5 Kelpoisuuden toteaminen
Kevytsoraharkkorakenteen kelpoisuus todetaan osoittamalla materiaalien laatua niistä annettujen määräysten ja ohjeiden mukaisesti.

Rakenteet tarkastetaan ja varmistutaan siitä, että työ on tehty näiden ohjeiden edellyttämällä tavalla.

Jos laadunvalvontaa ei ole järjestetty edellä maini- tulla tavalla tai jos on ilmennyt erikoista sytyttö- spällä harkojen kelpoisuutta, todetaan harkojen laatua työmaalla oletettaisita näytteistä hyväksytyssä koetelulaatoksessa tehtävän kokein. Tällöin kevytsoraharkoista otetaan työmaalla näytteet standardin
SFS 4529 mukaisesti siten, että valmistuserällä tässä yhteydessä tarkoitetaan tarkastuserää ja tarkastuserän sisältäessä yli 2 000 harkkoa, mutakin alavaa 2 000 harkon erää.

Jos betoniteräksistä on todettu tehdyksi laadunvalvontasopimus Valtion teknillisen tutkimuskeskuksen kanssa, riittää, kun valtasusmerkeistä on todettu terästen kuuluvan laadunvalvontasopimusten piiriin.